示例#1
0
文件: model_tuner.py 项目: wlau88/IDA
def profile_face_clf(img_lst, cascade_file, scale_factor, min_neighbors, min_size):
    """Classifies face based on profile image

    :param img_lst: list of image objects with profile image
    :param cascade_file, scale_factor, min_neighbors, min_size: tuning parameters
    :return pred_lst: list of predictions (face or not)
    """
    pred_lst = []

    i = 0

    for img_obj in img_lst:

        image = img_obj["face_img"]

        face_detector = FaceDetector(cascade_file, scale_factor, min_neighbors, min_size)
        face_detector_processor = FaceDetectorProcessor()
        face_detector_processor.detector = face_detector
        cropped_face, face_in_square = face_detector_processor.process_image(image)

        i += 1
        print "Inserting prediction result ", i

        pred_lst.append(face_in_square)

    return pred_lst
示例#2
0
文件: model_tuner.py 项目: wlau88/IDA
def profile_face_clf(img_lst, cascade_file, scale_factor, min_neighbors,
                     min_size):
    """Classifies face based on profile image

    :param img_lst: list of image objects with profile image
    :param cascade_file, scale_factor, min_neighbors, min_size: tuning parameters
    :return pred_lst: list of predictions (face or not)
    """
    pred_lst = []

    i = 0

    for img_obj in img_lst:

        image = img_obj['face_img']

        face_detector = FaceDetector(cascade_file, scale_factor, min_neighbors,
                                     min_size)
        face_detector_processor = FaceDetectorProcessor()
        face_detector_processor.detector = face_detector
        cropped_face, face_in_square = face_detector_processor.process_image(
            image)

        i += 1
        print "Inserting prediction result ", i

        pred_lst.append(face_in_square)

    return pred_lst
示例#3
0
    def classify_profile_photo(self, image_metadata):
        """Classifies the face in a profile photo

        Uses the CropImageProcessor to crop the image, passes it on to
        the image_processor then use the clf to classify the image

        :param image_metadata: metadata of the image 
        :return: classification result ([] if 'Content not found')

        """
        url = image_metadata['user']['profile_picture']
        imageFile = requests.get(url).content

        if imageFile == 'Content not found':
            return []

        fout = open('temp.jpg', 'w')
        fout.write(imageFile)
        fout.close()

        image = cv2.imread('temp.jpg')
        height, width, channels = image.shape

        photo_id = url[url.rindex('https://') + 9:].replace('/', '@')

        clf_results = []  #list of classification results

        user_id = image_metadata['user']['id']

        #####Optimized parameters after model tuning
        face_detector = FaceDetector('haarcascade_frontalface_default.xml',
                                     1.1, 1, (20, 20))
        face_detector_processor = FaceDetectorProcessor()
        face_detector_processor.detector = face_detector

        self._image_processor = face_detector_processor
        #####

        cropped_face, face_in_square = self._image_processor.process_image(
            image)

        try:
            if face_in_square:
                #stores it in directory
                fname = self._image_processor.save_image(image=cropped_face,
                                                         user_id=user_id,
                                                         photo_id=photo_id)
                input_image = caffe.io.load_image(fname)
                clf_results.append((user_id, photo_id, self._clf(input_image)))
        except Exception, e:
            print str(e)
示例#4
0
    def classify_profile_photo(self, image_metadata):
        """Classifies the face in a profile photo

        Uses the CropImageProcessor to crop the image, passes it on to
        the image_processor then use the clf to classify the image

        :param image_metadata: metadata of the image 
        :return: classification result ([] if 'Content not found')

        """
        url = image_metadata['user']['profile_picture']
        imageFile = requests.get(url).content
        
        if imageFile == 'Content not found':
            return []

        fout = open('temp.jpg', 'w')
        fout.write(imageFile)
        fout.close()

        image = cv2.imread('temp.jpg')
        height, width, channels = image.shape 

        photo_id = url[url.rindex('https://')+9:].replace('/', '@') 

        clf_results = [] #list of classification results    

        user_id = image_metadata['user']['id']

        #####Optimized parameters after model tuning
        face_detector = FaceDetector('haarcascade_frontalface_default.xml', 
                                     1.1, 1, (20,20))
        face_detector_processor = FaceDetectorProcessor()
        face_detector_processor.detector = face_detector

        self._image_processor = face_detector_processor
        #####

        cropped_face, face_in_square = self._image_processor.process_image(image)

        try:
            if face_in_square:
                #stores it in directory
                fname = self._image_processor.save_image(image=cropped_face, 
                                                         user_id=user_id,
                                                         photo_id=photo_id)
                input_image = caffe.io.load_image(fname)
                clf_results.append((user_id, photo_id, self._clf(input_image)))
        except Exception, e:
            print str(e)
示例#5
0
文件: model_tuner.py 项目: wlau88/IDA
def tagged_face_clf(img_lst, cascade_file, scale_factor, min_neighbors,
                    min_size, crop_radius):
    """Classifies face based on full image and crop position

    :param img_lst: list of image objects with full image and crop 
    position information
    :param cascade_file, scale_factor, min_neighbors, min_size,
    crop_radius: tuning parameters
    :return pred_lst: list of predictions (face or not)
    """
    pred_lst = []

    i = 0

    for img_obj in img_lst:

        image = img_obj['full_img']

        if image == None:
            face_in_square = None

        else:
            pos_x = img_obj['crop_pos'][0]
            pos_y = img_obj['crop_pos'][1]

            height, width, channels = image.shape

            x_coord = float(pos_x) * width
            y_coord = float(pos_y) * height

            crop_processor = CropImageProcessor((x_coord, y_coord),
                                                tagged_radius=crop_radius)
            cropped_square = crop_processor.process_image(image)
            face_detector = FaceDetector(cascade_file, scale_factor,
                                         min_neighbors, min_size)
            face_detector_processor = FaceDetectorProcessor()
            face_detector_processor.detector = face_detector
            cropped_face, face_in_square = face_detector_processor.process_image(
                cropped_square)

            i += 1
            print "Inserting prediction result", i

        pred_lst.append(face_in_square)

    return pred_lst
示例#6
0
文件: model_tuner.py 项目: wlau88/IDA
def tagged_face_clf(img_lst, cascade_file, scale_factor, min_neighbors, min_size, crop_radius):
    """Classifies face based on full image and crop position

    :param img_lst: list of image objects with full image and crop 
    position information
    :param cascade_file, scale_factor, min_neighbors, min_size,
    crop_radius: tuning parameters
    :return pred_lst: list of predictions (face or not)
    """
    pred_lst = []

    i = 0

    for img_obj in img_lst:

        image = img_obj["full_img"]

        if image == None:
            face_in_square = None

        else:
            pos_x = img_obj["crop_pos"][0]
            pos_y = img_obj["crop_pos"][1]

            height, width, channels = image.shape

            x_coord = float(pos_x) * width
            y_coord = float(pos_y) * height

            crop_processor = CropImageProcessor((x_coord, y_coord), tagged_radius=crop_radius)
            cropped_square = crop_processor.process_image(image)
            face_detector = FaceDetector(cascade_file, scale_factor, min_neighbors, min_size)
            face_detector_processor = FaceDetectorProcessor()
            face_detector_processor.detector = face_detector
            cropped_face, face_in_square = face_detector_processor.process_image(cropped_square)

            i += 1
            print "Inserting prediction result", i

        pred_lst.append(face_in_square)

    return pred_lst
示例#7
0
 def __init__(self, clf, image_processor=FaceDetectorProcessor()):
     self._image_processor = image_processor
     self._clf = clf