def __init__( self, img_fname: str, pb_color=image_utils.ANNOT_COLORS["GREEN"], width: int = 750, # Width of the primary window height: int = 750, # Height of the primary window minimap_size: int = 400, # Size of square minimap ): tk.Tk.__init__(self) self.img_fname = img_fname img = image_utils.load_img(img_fname) self.height, self.width, _channels = img.shape self.rgb_color = pb_color self.win_width = width self.win_height = height self.minimap_size = minimap_size self.recorded_points = [] self.tkinter_lines = [] # List of tuples, each tuple is 4 values decribing a line self.pil_draw_queue = [] self.canvas = tk.Canvas( self, width=width, height=height, cursor="cross", scrollregion=(0, 0, self.width, self.height), ) self.canvas.grid(row=0, column=0) self.hbar = tk.Scrollbar(self, orient=tk.HORIZONTAL) self.hbar.config(command=self.canvas.xview) self.hbar.grid(row=1, column=0, sticky=tk.E + tk.W) self.vbar = tk.Scrollbar(self, orient=tk.VERTICAL) self.vbar.config(command=self.canvas.yview) self.vbar.grid(row=0, column=1, sticky=tk.NE + tk.SE) self.canvas.config(xscrollcommand=self.hbar.set, yscrollcommand=self.vbar.set) self.img = Image.open(img_fname) self.disp_img = ImageTk.PhotoImage(self.img) self.canvas.create_image(0, 0, image=self.disp_img, anchor=tk.NW) self.canvas.focus_set() self.canvas.bind("<B1-Motion>", self.paintbrush) self.canvas.bind("<Button-1>", self.initialize_paintbrush) self.canvas.bind("<ButtonRelease-1>", self.close_paintbrush) self.canvas.bind("<Return>", self.save_mask) self.canvas.bind("<s>", self.save_mask) self.canvas.bind("<d>", self.clearlast) self.canvas.bind("<D>", self.clearall) self.canvas.bind("<m>", self.open_minimap)
import tensorflow as tf from tensorflow.python.keras import models import os import glob import image_utils as IU # Define paths content_path = 'input/content/elon.jpg' style_path = 'input/style/ironman.jpg' init_path = 'input/init/512.jpg' lena = 'input/content/lena_test.png' lion = 'input/content/lion.jpg' dog = 'input/content/dog.jpg' # Load the style and content images style_img = IU.load_img(style_path) content_img = IU.load_img(content_path) generated_img = tf.Variable(content_img) # Define which layers are to be used for this model. These layers are defined in Section # 3 of Gatys' paper content_layers = ['block5_conv2'] style_layers = [ 'block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1' ] num_content_layers = len(content_layers) num_style_layers = len(style_layers) # MODEL UTILITIES - FUNCTION 1 - VGG19 LAYERS
#save result img.imsave("./result.png",image.numpy()[0]) #plt.imshow(image.read_value()[0]) #plt.show() if __name__=="__main__": content_image = image_utils.load_img("./6.jpeg") style_image = image_utils.load_img("./4.jpeg") train(content_image=content_image,style_image=style_image) # # plt.subplot(1, 2, 1) # image_utils.imshow(content_image, 'Content Image') # # plt.subplot(1, 2, 2) # image_utils.imshow(style_image, 'Style Image') # # plt.show() # x = tf.keras.applications.vgg19.preprocess_input(content_image*255) # #print("x:\n",x) # x = tf.image.resize(x, (224, 224)) # #print("x:\n", x)
def __getitem__(self, index): _input = load_img(os.path.join(self.a_path, self.files[index])) _input = self.transform(_input) _target = load_img(os.path.join(self.b_path, self.files[index])) _target = self.transform(_target) return _input, _target
import cv2 as cv # type: ignore import numpy import numpy.typing import corner_finder import edge_finder import image_utils def find_boxes(sudoku_img: numpy.typing.NDArray) -> "tuple[int, int]": # TODO: Add functionality to detect boundaries of a sudoku box edges = edge_finder.get_image_edges(sudoku_img) corners = corner_finder.find_harris_corners(edges) edge = corner_finder.find_intersections(edges) # image_utils.show_image(edges, "edges") # image_utils.show_image(corners, "corners") # image_utils.show_image(edge, "intersection") cv.waitKey(0) return (0, 0) image_path = image_utils.get_image_path("solved_1.png", use_solved_folder=True) sudoku_image = image_utils.load_img(image_path) find_boxes(sudoku_image)