def test_cluster(): # use API # test clustering with ImagedirCtx() as ctx: ias = ic.image_arrays(ctx.imagedir, size=(224, 224)) model = ic.get_model() fps = ic.fingerprints(ias, model) fps = ic.pca(fps, n_components=0.95) clusters = ic.cluster(fps, sim=0.5) assert set(clusters.keys()) == set(ctx.clusters.keys()) for nimg in ctx.clusters.keys(): for val_clus, ref_clus in zip(clusters[nimg], ctx.clusters[nimg]): msg = f"ref_clus: {ref_clus}, val_clus: {val_clus}" assert set(ref_clus) == set(val_clus), msg
def search_cluster(keyword): directory = 'downloads/%s' % keyword print('Starting crawler') searcher = crawler() try: print('Searching for %s' % keyword) searcher.search(keyword) print('Downloading') files = searcher.download(32) except: searcher.stop() sys.exit(0) # print('Converting pictures into jpg') # for file in files: # try: # if not imghdr.what(file) == 'jpeg': # im = Image.open(file) # rgb_im = im.convert('RGB') # rgb_im.save(file + '.jpg') # except: # pass images = icio.read_images(directory, size=(224, 224)) # Create Keras NN model. model = calc.get_model() # Feed images through the model and extract fingerprints (feature vectors). print('Feeding images to the neural network to extract features') fingerprints = calc.fingerprints(images, model) # Optionally run a PCA on the fingerprints to compress the dimensions. Use a # cumulative explained variance ratio of 0.95. fingerprints = calc.pca(fingerprints, n_components=0.95) # Run clustering on the fingerprints. Select clusters with similarity index clusters = calc.cluster(fingerprints, sim=0.5) # Create dirs with links to images. Dirs represent the clusters the images # belong to. postproc.make_links(clusters, directory + '/imagecluster/clusters') # Plot images arranged in clusters and save plot. fig, ax = postproc.plot_clusters(clusters, images)
def test_low_level_api_and_clustering(): # use low level API (same as get_image_data) but call all funcs # test clustering with ImagedirCtx() as ctx: images = icio.read_images(ctx.imagedir, size=(224, 224)) model = ic.get_model() fingerprints = ic.fingerprints(images, model) for kk, vv in fingerprints.items(): assert isinstance(vv, np.ndarray) assert len(vv) == 4096, len(vv) fingerprints = ic.pca(fingerprints, n_components=0.95) clusters = ic.cluster(fingerprints, sim=0.5) assert set(clusters.keys()) == set(ctx.clusters.keys()) assert len(fingerprints.keys()) == len(ctx.image_fns) assert set(fingerprints.keys()) == set(ctx.image_fns) for nimg in ctx.clusters.keys(): for val_clus, ref_clus in zip(clusters[nimg], ctx.clusters[nimg]): msg = f"ref_clus: {ref_clus}, val_clus: {val_clus}" assert set(ref_clus) == set(val_clus), msg
## pca_kwds=dict(n_components=0.95), ## img_kwds=dict(size=(224,224))) # Create image database in memory. This helps to feed images to the NN model # quickly. images = icio.read_images('pics/', size=(224, 224)) # Create Keras NN model. model = calc.get_model() # Feed images through the model and extract fingerprints (feature vectors). fingerprints = calc.fingerprints(images, model) # Optionally run a PCA on the fingerprints to compress the dimensions. Use a # cumulative explained variance ratio of 0.95. fingerprints = calc.pca(fingerprints, n_components=0.95) # Read image timestamps. Need that to calculate the time distance, can be used # in clustering. timestamps = icio.read_timestamps('pics/') # Run clustering on the fingerprints. Select clusters with similarity index # sim=0.5. Mix 80% content distance with 20% timestamp distance (alpha=0.2). clusters = calc.cluster(fingerprints, sim=0.5, timestamps=timestamps, alpha=0.2) # Create dirs with links to images. Dirs represent the clusters the images # belong to. postproc.make_links(clusters, 'pics/imagecluster/clusters')
from imagecluster import calc as ic from imagecluster import postproc as pp # Create image database in memory. This helps to feed images to the NN model # quickly. ias = ic.image_arrays('pics/', size=(224,224)) # Create Keras NN model. model = ic.get_model() # Feed images through the model and extract fingerprints (feature vectors). fps = ic.fingerprints(ias, model) # Optionally run a PCA on the fingerprints to compress the dimensions. Use a # cumulative explained variance ratio of 0.95. fps = ic.pca(fps, n_components=0.95) # Run clustering on the fingerprints. Select clusters with similarity index # sim=0.5 clusters = ic.cluster(fps, sim=0.5) # Create dirs with links to images. Dirs represent the clusters the images # belong to. pp.make_links(clusters, 'pics/imagecluster/clusters') # Plot images arranged in clusters. pp.visualize(clusters, ias)
def main(imagedir, sim=0.5, layer='fc2', size=(224,224), links=True, vis=False, max_csize=None, pca=False, pca_params=dict(n_components=0.9)): """Example main app using this library. Upon first invocation, the image and fingerprint databases are built and written to disk. Each new invocation loads those and only repeats * clustering * creation of links to files in clusters * visualization (if `vis=True`) This is good for playing around with the `sim` parameter, for instance, which only influences clustering. Parameters ---------- imagedir : str path to directory with images sim : float (0..1) similarity index (see :func:`calc.cluster`) layer : str which layer to use as feature vector (see :func:`calc.get_model`) size : tuple input image size (width, height), must match `model`, e.g. (224,224) links : bool create dirs with links vis : bool plot images in clusters max_csize : max number of images per cluster for visualization (see :mod:`~postproc`) pca : bool Perform PCA on fingerprints before clustering, using `pca_params`. pca_params : dict kwargs to sklearn's PCA Notes ----- imagedir : To select only a subset of the images, create an `imagedir` and symlink your selected images there. In the future, we may add support for passing a list of files, should the need arise. But then again, this function is only an example front-end. """ fps_fn = pj(imagedir, ic_base_dir, 'fingerprints.pk') ias_fn = pj(imagedir, ic_base_dir, 'images.pk') ias = None if not os.path.exists(fps_fn): print(f"no fingerprints database {fps_fn} found") os.makedirs(os.path.dirname(fps_fn), exist_ok=True) model = ic.get_model(layer=layer) if not os.path.exists(ias_fn): print(f"create image array database {ias_fn}") ias = ic.image_arrays(imagedir, size=size) co.write_pk(ias, ias_fn) else: ias = co.read_pk(ias_fn) print("running all images through NN model ...") fps = ic.fingerprints(ias, model) co.write_pk(fps, fps_fn) else: print(f"loading fingerprints database {fps_fn} ...") fps = co.read_pk(fps_fn) if pca: fps = ic.pca(fps, **pca_params) print("pca dims:", list(fps.values())[0].shape[0]) print("clustering ...") clusters = ic.cluster(fps, sim) if links: pp.make_links(clusters, pj(imagedir, ic_base_dir, 'clusters')) if vis: if ias is None: ias = co.read_pk(ias_fn) pp.visualize(clusters, ias, max_csize=max_csize)
def main_kmeans(imagedir, n_clusters=5, layer='fc2', size=(224, 224), links=True, pca=False, pca_params=dict(n_components=0.9)): """Example main app using this library. Upon first invocation, the image and fingerprint databases are built and written to disk. Each new invocation loads those and only repeats * clustering * creation of links to files in clusters * visualization (if `vis=True`) This is good for playing around with the `sim` parameter, for instance, which only influences clustering. Parameters ---------- imagedir : str path to directory with images n_cluster : int (1...999) num of kmeans cluster (see :func:`calc.cluster_kmeans`) layer : str which layer to use as feature vector (see :func:`calc.get_model`) size : tuple input image size (width, height), must match `model`, e.g. (224,224) links : bool create dirs with links pca : bool Perform PCA on fingerprints before clustering, using `pca_params`. pca_params : dict kwargs to sklearn's PCA Notes ----- imagedir : To select only a subset of the images, create an `imagedir` and symlink your selected images there. In the future, we may add support for passing a list of files, should the need arise. But then again, this function is only an example front-end. """ fps_fn = pj(imagedir, ic_base_dir, 'fingerprints.pk') ias_fn = pj(imagedir, ic_base_dir, 'images.pk') ias = None logger_kmeans = log(logger_name='kmeans').logger try: if not os.path.exists(fps_fn): print("no fingerprints database {} found".format(fps_fn)) logger_kmeans.info( "no fingerprints database {} found".format(fps_fn)) os.makedirs(os.path.dirname(fps_fn), exist_ok=True) try: model = ic.get_model(layer=layer) except Exception as e: logger_kmeans.error(e) if not os.path.exists(ias_fn): logger_kmeans.info( "create image array database {}".format(ias_fn)) print("create image array database {}".format(ias_fn)) ias = ic.image_arrays(imagedir, size=size) co.write_pk(ias, ias_fn) else: ias = co.read_pk(ias_fn) print("running all images through NN model ...") fps = ic.fingerprints(ias, model) co.write_pk(fps, fps_fn) else: print("loading fingerprints database {} ...".format(fps_fn)) fps = co.read_pk(fps_fn) if pca: fps = ic.pca(fps, **pca_params) print("pca dims:", list(fps.values())[0].shape[0]) logger_kmeans.info("pca dims: " + str(list(fps.values())[0].shape[0])) #将每张图片转换成向量 #进行聚类 print("clustering ...") logger_kmeans.info("clustering ...") clusters = ic.cluster_kmeans(fps, n_clusters=n_clusters) if links: pp.make_links_v2(clusters, pj(imagedir, ic_base_dir, 'clusters')) except Exception as e: logger_kmeans.error(e)