示例#1
0
def main(params):
  batch_size = params['batch_size']
  dataset = params['dataset']
  word_count_threshold = params['word_count_threshold']
  do_grad_check = params['do_grad_check']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  params['mode'] = 'CPU'

  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  # delegate the initialization of the model to the Generator class
  BatchGenerator = decodeGenerator(params)
  init_struct = BatchGenerator.init(params, misc)
  model, misc['update'], misc['regularize'] = (init_struct['model'], init_struct['update'], init_struct['regularize'])
  
  if params['mode'] == 'GPU':
    # force overwrite here. This is a bit of a hack, not happy about it
    model['bd'] = gp.garray(bias_init_vector.reshape(1, bias_init_vector.size))
  else:
    model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
  print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

  # initialize the Solver and the cost function
  solver = Solver()
  def costfun(batch, model):
    # wrap the cost function to abstract some things away from the Solver
    return RNNGenCost(batch, model, params, misc)

  # calculate how many iterations we need
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  abort = False
  top_val_ppl2 = -1
  smooth_train_ppl2 = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []
  max_iters = 1
  for it in xrange(max_iters):
    if abort: break
    t0 = time.time()
    # fetch a batch of data
    batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
    # evaluate cost, gradient and perform parameter update
    step_struct = solver.step(batch, model, costfun, **params)
    cost = step_struct['cost']
    dt = time.time() - t0

    # print training statistics
    train_ppl2 = step_struct['stats']['ppl2']
    smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
    if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out
    epoch = it * 1.0 / num_iters_one_epoch
    print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
          % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
             train_ppl2, smooth_train_ppl2)

    # perform gradient check if desired, with a bit of a burnin time (10 iterations)
    #if it == 10 and do_grad_check:
    #  solver.gradCheck(batch, model, costfun)
    #  print 'done gradcheck. continue?'
    #  raw_input()
    #
    ## detect if loss is exploding and kill the job if so
    #total_cost = cost['total_cost']
    #if it == 0:
    #  total_cost0 = total_cost # store this initial cost
    #if total_cost > total_cost0 * 2:
    #  print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
    #  abort = True # set the abort flag, we'll break out
    #
    ## logging: write JSON files for visual inspection of the training
    #tnow = time.time()
    #if tnow > last_status_write_time + 60*1: # every now and then lets write a report
    #  last_status_write_time = tnow
    #  jstatus = {}
    #  jstatus['time'] = datetime.datetime.now().isoformat()
    #  jstatus['iter'] = (it, max_iters)
    #  jstatus['epoch'] = (epoch, max_epochs)
    #  jstatus['time_per_batch'] = dt
    #  jstatus['smooth_train_ppl2'] = smooth_train_ppl2
    #  jstatus['val_ppl2'] = val_ppl2 # just write the last available one
    #  jstatus['train_ppl2'] = train_ppl2
    #  json_worker_status['history'].append(jstatus)
    #  status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
    #  try:
    #    json.dump(json_worker_status, open(status_file, 'w'))
    #  except Exception, e: # todo be more clever here
    #    print 'tried to write worker status into %s but got error:' % (status_file, )
    #    print e
    #
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    #is_last_iter = (it+1) == max_iters
    #if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
    #  val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
    #  print 'validation perplexity = %f' % (val_ppl2, )
    #  write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
    #  if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
    #    if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
    #      # if we beat a previous record or if this is the first time
    #      # AND we also beat the user-defined threshold or it doesnt exist
    #      top_val_ppl2 = val_ppl2
    #      filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (dataset, host, params['fappend'], val_ppl2)
    #      filepath = os.path.join(params['checkpoint_output_directory'], filename)
    #      checkpoint = {}
    #      checkpoint['it'] = it
    #      checkpoint['epoch'] = epoch
    #      checkpoint['model'] = model
    #      checkpoint['params'] = params
    #      checkpoint['perplexity'] = val_ppl2
    #      checkpoint['wordtoix'] = misc['wordtoix']
    #      checkpoint['ixtoword'] = misc['ixtoword']
    #      try:
    #        pickle.dump(checkpoint, open(filepath, "wb"))
    #        print 'saved checkpoint in %s' % (filepath, )
    #      except Exception, e: # todo be more clever here
    #        print 'tried to write checkpoint into %s but got error: ' % (filepat, )
    #        print e
    cuda.close()
def main(params):
    batch_size = params['batch_size']
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']

    # fetch the data provider
    dp = getDataProvider(params)

    # Initialize the optimizer
    solver = Solver(params['solver'])

    params['aux_inp_size'] = dp.aux_inp_size
    params['image_feat_size'] = dp.img_feat_size

    print 'Image feature size is %d, and aux input size is %d' % (
        params['image_feat_size'], params['aux_inp_size'])

    misc = {
    }  # stores various misc items that need to be passed around the framework

    if params['checkpoint_file_name'] == 'None':
        # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
        # at least word_count_threshold number of times
        misc['wordtoix'], misc[
            'ixtoword'], bias_init_vector = preProBuildWordVocab(
                dp.iterSentences('train'), word_count_threshold)
    else:
        # Load Vocabulary from the checkpoint
        misc = checkpoint_init['misc']

    params['vocabulary_size'] = len(misc['wordtoix'])
    params['output_size'] = len(misc['ixtoword'])  # these should match though

    # This initializes the generator model parameters and does matrix initializations
    if params['t_eval_only'] == 0:
        generator = decodeGenerator(params)
        # Build the computational graph

        if params['use_encoder_for'] & 2:
            aux_enc_inp = generator.model_th['Wemb'] if params[
                'encode_gt_sentences'] else dp.aux_inputs.T
            hid_size = params['featenc_hidden_size']
            auxFeatEncoder = RecurrentFeatEncoder(
                hid_size,
                params['image_encoding_size'],
                params,
                mdl_prefix='aux_enc_',
                features=aux_enc_inp)
            mdlLen = len(generator.model_th.keys())
            generator.model_th.update(auxFeatEncoder.model_th)
            assert (len(generator.model_th.keys()) == (
                mdlLen + len(auxFeatEncoder.model_th.keys())))
            (auxenc_use_dropout, auxFeatEnc_inp, xAux,
             updatesLSTMAuxFeat) = auxFeatEncoder.build_model(
                 generator.model_th, params)

            if params['encode_gt_sentences']:
                # Reshape it size(batch_size, n_gt, hidden_size)
                xAux = xAux.reshape((-1, params['n_encgt_sent'],
                                     params['featenc_hidden_size']))
                # Convert it to size (batch_size, n_gt*hidden_size
                xAux = xAux.flatten(2)
                xI = tensor.zeros((batch_size, params['image_encoding_size']))
                imgFeatEnc_inp = []
        else:
            auxFeatEnc_inp = []
            imgFeatEnc_inp = []
            xAux = None
            xI = None

        (gen_inp_list, predLogProb, predIdx, predCand, gen_out, updatesLstm,
         seq_lengths) = generator.build_prediction_model(generator.model_th,
                                                         params,
                                                         xI=xI,
                                                         xAux=xAux)
        gen_inp_list = imgFeatEnc_inp + auxFeatEnc_inp + gen_inp_list
        gen_out = gen_out.reshape([
            gen_out.shape[0], -1, params['n_gen_samples'],
            params['vocabulary_size']
        ])
        #convert updates lstm to a tuple, this is to help merge it with grad updates
        updatesLstm = [(k, v) for k, v in updatesLstm.iteritems()]
        f_gen_only = theano.function(
            gen_inp_list, [predLogProb, predIdx, gen_out, seq_lengths],
            name='f_pred',
            updates=updatesLstm)

        modelGen = generator.model_th
        upListGen = generator.update_list

        if params['use_mle_train']:
            (use_dropout_genTF, inp_list_genTF, _, cost_genTF, _,
             updatesLSTM_genTF) = generator.build_model(
                 generator.model_th, params)
            f_eval_genTF = theano.function(inp_list_genTF,
                                           cost_genTF,
                                           name='f_eval')
            grads_genTF = tensor.grad(cost_genTF[0],
                                      wrt=modelGen.values(),
                                      add_names=True)
            lr_genTF = tensor.scalar(name='lr', dtype=config.floatX)
            f_grad_genTF, f_update_genTF, zg_genTF, rg_genTF, ud_genTF = solver.build_solver_model(
                lr_genTF, modelGen, grads_genTF, inp_list_genTF, cost_genTF,
                params)
    else:
        modelGen = []
        updatesLstm = []

    if params['met_to_track'] != []:
        trackMetargs = {'eval_metric': params['met_to_track']}
        refToks, scr_info = eval_prep_refs('val', dp, params['met_to_track'])
        trackMetargs['refToks'] = refToks
        trackMetargs['scr_info'] = scr_info

    # Initialize the evalator model
    if params['share_Wemb']:
        evaluator = decodeEvaluator(params, modelGen['Wemb'])
    else:
        evaluator = decodeEvaluator(params)
    modelEval = evaluator.model_th

    if params['t_eval_only'] == 0:
        # Build the evaluator graph to evaluate reference and generated captions
        if params.get('upd_eval_ref', 0):
            (refeval_inp_list, ref_f_pred_fns, ref_costs, ref_predTh,
             ref_modelEval) = evaluator.build_advers_eval(modelEval, params)
        (eval_inp_list, f_pred_fns, costs, predTh,
         modelEval) = evaluator.build_advers_eval(modelEval, params,
                                                  gen_inp_list, gen_out,
                                                  updatesLstm, seq_lengths)
    else:
        # Build the evaluator graph to evaluate only reference captions
        (eval_inp_list, f_pred_fns, costs, predTh,
         modelEval) = evaluator.build_advers_eval(modelEval, params)

    # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
    if params['t_eval_only'] == 0:  # and 0:
        if params['checkpoint_file_name'] == 'None':
            modelGen['bd'].set_value(bias_init_vector.astype(config.floatX))
            if params.get('class_out_factoring', 0) == 1:
                modelGen['bdCls'].set_value(
                    bias_init_inter_class.astype(config.floatX))

    comb_inp_list = eval_inp_list
    if params['t_eval_only'] == 0:
        for inp in gen_inp_list:
            if inp not in comb_inp_list:
                comb_inp_list.append(inp)

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation or debug purposes
    if params['t_eval_only'] == 0:
        f_eval = theano.function(comb_inp_list,
                                 costs[:1],
                                 name='f_eval',
                                 updates=updatesLstm)
    else:
        f_eval = theano.function(comb_inp_list, costs[:1], name='f_eval')

    if params['share_Wemb']:
        modelEval.pop('Wemb')
    if params['fix_Wemb']:
        upListGen.remove('Wemb')

    #-------------------------------------------------------------------------------------------------------------------------
    # Now let's build a gradient computation graph and update mechanism
    #-------------------------------------------------------------------------------------------------------------------------
    # First compute gradient on the evaluator params w.r.t cost
    if params.get('upd_eval_ref', 0):
        gradsEval_ref = tensor.grad(ref_costs[0],
                                    wrt=modelEval.values(),
                                    add_names=True)
    gradsEval = tensor.grad(costs[0], wrt=modelEval.values(), add_names=True)

    # Update functions for the evaluator
    lrEval = tensor.scalar(name='lrEval', dtype=config.floatX)
    if params.get('upd_eval_ref', 0):
        f_grad_comp_eval_ref, f_param_update_eval_ref, _, _, _ = solver.build_solver_model(
            lrEval,
            modelEval,
            gradsEval_ref,
            refeval_inp_list,
            ref_costs[0],
            params,
            w_clip=params['eval_w_clip'])
    f_grad_comp_eval, f_param_update_eval, zg_eval, rg_eval, ud_eval = solver.build_solver_model(
        lrEval,
        modelEval,
        gradsEval,
        comb_inp_list,
        costs[:1],
        params,
        updatesLstm,
        w_clip=params['eval_w_clip'])

    # Now compute gradient on the generator params w.r.t the cost
    if params['t_eval_only'] == 0:
        gradsGen = tensor.grad(costs[1], wrt=modelGen.values(), add_names=True)
        lrGen = tensor.scalar(name='lrGen', dtype=config.floatX)
        # Update functions for the generator
        f_grad_comp_gen, f_param_update_gen, zg_gen, rg_gen, ud_gen = solver.build_solver_model(
            lrGen, modelGen, gradsGen,
            comb_inp_list[:(len(comb_inp_list) - 1 +
                            params['gen_feature_matching'])], costs[1], params,
            updatesLstm)

    #-------------------------------------------------------------------------------------------------------------------------
    # If we want to track some metrics during the training, initialize stuff for that now
    #-------------------------------------------------------------------------------------------------------------------------
    print 'model init done.'
    if params['t_eval_only'] == 0:
        print 'Gen model has keys: ' + ', '.join(modelGen.keys())
    print 'Eval model has keys: ' + ', '.join(modelEval.keys())

    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_sentences_total = dp.getSplitSize('train', ofwhat='images')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    skip_first = 20
    iters_eval = 5
    iters_gen = 1

    cost_eval_iter = []
    cost_gen_iter = []
    trackSc_array = []

    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    top_val_ppl2 = -1
    smooth_train_ppl2 = 0.5  # initially size of dictionary of confusion
    smooth_train_cost = 0.0  # initially size of dictionary of confusion
    smooth_train_cost_gen = 1.0  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
    iter_out_file = os.path.join(
        'logs', 'advmodel_checkpoint_%s_%s_%s_log.npz' %
        (params['dataset'], host, params['fappend']))

    len_hist = defaultdict(int)
    t_print_sec = 30
    ## Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != 'None':
        if params['t_eval_only'] != 1:
            print '\n Now initing gen Model:'
            zipp(model_init_gen_from, modelGen)
        if 'trackers' in checkpoint_init:
            trackSc_array = checkpoint_init['trackers'].get('trackScores', [])
        print '\n Now initing Eval Model:'
        zipp(model_init_eval_from, modelEval)
        #zipp(rg_init,rgGen)
        print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
          checkpoint_init['perplexity']))

    ##############################################################
    # Define signal handler to catch ctl-c or kills so that we can save the model trained till that point
    def signal_handler(signal, frame):
        print('You pressed Ctrl+C! Saving Checkpoint Now before exiting!')
        filename = 'advmodel_checkpoint_%s_%s_%s_%.2f_INT.p' % (
            params['dataset'], host, params['fappend'], val_ppl2)
        dumpCheckpoint(filename, params, modelGen, modelEval, misc, it,
                       val_ppl2)
        sys.exit(0)

    #signal.signal(signal.SIGINT, signal_handler)
    ##############################################################

    #In testing disable sampling and use the greedy approach!?
    generator.usegumbel.set_value(1)
    if params['met_to_track'] != []:
        tsc_max, tsc_mean, tsc_min = eval_gen_samps(f_gen_only, dp, params,
                                                    misc, params['rev_eval'],
                                                    **trackMetargs)
        trackSc_array.append((0, {
            evm + '_max': tsc_max[i]
            for i, evm in enumerate(params['met_to_track'])
        }))
        trackSc_array[-1][1].update({
            evm + '_mean': tsc_mean[i]
            for i, evm in enumerate(params['met_to_track'])
        })
        trackSc_array[-1][1].update({
            evm + '_min': tsc_min[i]
            for i, evm in enumerate(params['met_to_track'])
        })

    disp_some_gen_samps(f_gen_only, dp, params, misc, n_samp=5)
    evaluator.use_noise.set_value(1.)
    eval_acc, gen_acc = eval_discrm_gen('val', dp, params, f_pred_fns[0], misc)
    # Re-enable sampling
    generator.usegumbel.set_value(1)

    np.savez(iter_out_file,
             eval_cost=np.array(cost_eval_iter),
             gen_cost=np.array(cost_gen_iter),
             tracksc=np.array(trackSc_array))
    smooth_train_cost = 0.0

    print '###################### NOW BEGINNING TRAINING #################################'

    for it in xrange(max_iters):
        t0 = time.time()
        # Enable using dropout in training
        evaluator.use_noise.set_value(1.)
        dt = 0.
        it2 = 0
        while eval_acc <= 60. or gen_acc >= 45. or it2 < iters_eval * skip_first:
            # fetch a batch of data
            t1 = time.time()

            s_probs = [
                0.6, 0.4, 0.0
            ] if params['eval_loss'] == 'contrastive' else [1.0, 0.0, 0.0]
            batch = dp.sampAdversBatch(batch_size,
                                       n_sent=params['n_gen_samples'],
                                       probs=s_probs)
            cnn_inps = prepare_adv_data(batch,
                                        misc['wordtoix'],
                                        maxlen=params['maxlen'],
                                        prep_for=params['eval_model'])

            enc_inp_list = prepare_seq_features(
                batch,
                use_enc_for=params['use_encoder_for'],
                maxlen=params['maxlen'],
                use_shared_mem=params['use_shared_mem_enc'],
                enc_gt_sent=params['encode_gt_sentences'],
                n_enc_sent=params['n_encgt_sent'],
                wordtoix=misc['wordtoix'])
            eval_cost = f_grad_comp_eval(*(cnn_inps + enc_inp_list))

            if np.isnan(eval_cost[0]):
                import pdb
                pdb.set_trace()
            f_param_update_eval(params['learning_rate_eval'])

            # Track training statistics
            smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * eval_cost[
                0] if it > 0 else eval_cost[0]
            dt2 = time.time() - t1
            if it2 % 500 == 499:
                gb = 0.  #modelGen['gumb_temp'].get_value() if params['use_gumbel_mse'] == 1 else 0
                print 'Iter %d/%d Eval Only Iter %d/%d, done. in %.3fs. Eval Cost is %.6f' % (
                    it, max_iters, it2, iters_eval * skip_first, dt2,
                    smooth_train_cost)
            if it2 % 100 == 99:
                eval_acc, gen_acc = eval_discrm_gen('val',
                                                    dp,
                                                    params,
                                                    f_pred_fns[0],
                                                    misc,
                                                    n_eval=500)
            it2 += 1

        evaluator.use_noise.set_value(1.)

        if it >= 0:
            skip_first = 1
        if it >= 100:
            skip_first = 1
        if it % 1000 == 999:
            skip_first = 1

        s_probs = [
            1.0, 0.0, 0.0
        ] if params['eval_loss'] == 'contrastive' else [1.0, 0.0, 0.0]
        batch = dp.sampAdversBatch(batch_size,
                                   n_sent=params['n_gen_samples'],
                                   probs=s_probs)
        cnn_inps = prepare_adv_data(batch,
                                    misc['wordtoix'],
                                    maxlen=params['maxlen'],
                                    prep_for=params['eval_model'])
        enc_inp_list = prepare_seq_features(
            batch,
            use_enc_for=params['use_encoder_for'],
            maxlen=params['maxlen'],
            use_shared_mem=params['use_shared_mem_enc'],
            enc_gt_sent=params['encode_gt_sentences'],
            n_enc_sent=params['n_encgt_sent'],
            wordtoix=misc['wordtoix'])

        gen_cost = f_grad_comp_gen(
            *(cnn_inps[:(len(cnn_inps) - 1 + params['gen_feature_matching'])] +
              enc_inp_list))
        f_param_update_gen(params['learning_rate_gen'])

        if params['use_mle_train']:
            generator.usegumbel.set_value(0)
            batch, l = dp.getRandBatchByLen(batch_size)
            gen_inp_list, lenS = prepare_data(batch, misc['wordtoix'],
                                              params['maxlen'])
            cost_genMLE = f_grad_genTF(*gen_inp_list)
            f_update_genTF(np.float32(params['learning_rate_gen'] / 50.0))
            generator.usegumbel.set_value(1)

        dt = time.time() - t0
        # print training statistics
        smooth_train_cost_gen = gen_cost if it == 0 else 0.99 * smooth_train_cost_gen + 0.01 * gen_cost

        tnow = time.time()
        if tnow > last_status_write_time + t_print_sec * 1:  # every now and then lets write a report
            gb = 0.  #modelGen['gumb_temp'].get_value() if params['use_gumbel_mse'] == 1 else 0
            print 'Iter %d/%d done. in %.3fs. Eval Cost is %.6f, Gen Cost is %.6f, temp: %.4f' % (it, max_iters, dt, \
             smooth_train_cost, smooth_train_cost_gen, gb)
            last_status_write_time = tnow

        cost_eval_iter.append(smooth_train_cost)
        cost_gen_iter.append(smooth_train_cost_gen)

        if it % 500 == 499:
            # Run the generator on the validation set and compute some metrics
            generator.usegumbel.set_value(1)
            if params['met_to_track'] != []:
                #In testing set the temperature to very low, so that it is equivalent to Greed samples
                tsc_max, tsc_mean, tsc_min = eval_gen_samps(
                    f_gen_only, dp, params, misc, params['rev_eval'],
                    **trackMetargs)
                trackSc_array.append((it, {
                    evm + '_max': tsc_max[i]
                    for i, evm in enumerate(params['met_to_track'])
                }))
                trackSc_array[-1][1].update({
                    evm + '_mean': tsc_mean[i]
                    for i, evm in enumerate(params['met_to_track'])
                })
                trackSc_array[-1][1].update({
                    evm + '_min': tsc_min[i]
                    for i, evm in enumerate(params['met_to_track'])
                })

            disp_some_gen_samps(f_gen_only, dp, params, misc, n_samp=5)
            generator.usegumbel.set_value(1)
            # if we beat a previous record or if this is the first time
            # AND we also beat the user-defined threshold or it doesnt exist
            top_val_ppl2 = gen_acc
        if it % 500 == 499:
            eval_acc, gen_acc = eval_discrm_gen('val',
                                                dp,
                                                params,
                                                f_pred_fns[0],
                                                misc,
                                                n_eval=500)
        if it % 1000 == 999:
            filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_genacc.p' % (
                params['dataset'], host, params['fappend'], it, gen_acc)
            dumpCheckpoint(filename, params, modelGen, modelEval, misc, it,
                           gen_acc)
        if it % 500 == 499:
            np.savez(iter_out_file,
                     eval_cost=np.array(cost_eval_iter),
                     gen_cost=np.array(cost_gen_iter),
                     tracksc=np.array(trackSc_array))

    # AND we also beat the user-defined threshold or it doesnt exist
    filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_GenDone.p' % (
        params['dataset'], host, params['fappend'], it, g_acc)
    dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, g_acc)
def main(params):
  word_count_threshold = params['word_count_threshold']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  # fetch the data provider
  dp = getDataProvider(params)
  # Initialize the optimizer 
  solver = Solver(params['solver'])

  params['image_feat_size'] = dp.img_feat_size

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  params['use_dropout'] = 1 

  if params['fine_tune'] == 1:
    params['mode'] = 'multimodal_lstm' if params['multimodal_lstm'] == 0 else 'multimodal_lstm'
    if params['checkpoint_file_name'] != None:
        params['batch_size'] = dp.dataset['batchsize']
        misc['wordtoix'] = checkpoint_init['wordtoix']
        misc['ixtoword'] = checkpoint_init['ixtoword']
    batch_size = 1
    num_sentences_total = dp.getSplitSize('train', ofwhat = 'images')
  else:
    params['mode'] = 'batchtrain'
    batch_size = params['batch_size']
    num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  
  params['vocabulary_size'] = len(misc['wordtoix'])
  pos_samp = np.arange(batch_size,dtype=np.int32)

  # This initializes the model parameters and does matrix initializations  
  evalModel = decodeEvaluator(params)
  model, misc['update'], misc['regularize'] = (evalModel.model_th, evalModel.updateP, evalModel.regularize)
  
  # Define the computational graph for relating the input image features and word indices to the
  # log probability cost funtion. 
  (use_dropout, inp_list,
     miscOuts, cost, predTh, model) = evalModel.build_model(model, params)

  # Add the regularization cost. Since this is specific to trainig and doesn't get included when we 
  # evaluate the cost on test or validation data, we leave it here outside the model definition
  if params['regc'] > 0.:
      reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
      reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']), name='reg_c')
      reg_cost = 0.
      for p in misc['regularize']:
        reg_cost += (model[p] ** 2).sum()
        reg_cost *= 0.5 * reg_c 
      cost[0] += (reg_cost /params['batch_size'])
    
  # Compile an evaluation function.. Doesn't include gradients
  # To be used for validation set evaluation
  f_eval= theano.function(inp_list, cost, name='f_eval')

  # Now let's build a gradient computation graph and rmsprop update mechanism
  grads = tensor.grad(cost, wrt=model.values())
  lr = tensor.scalar(name='lr',dtype=config.floatX)
  if params['sim_minibatch'] > 0:
    f_grad_accum, f_clr, ag = solver.accumGrads(model,grads,inp_list,cost, params['sim_minibatch'])
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(lr, model, ag,
                                      inp_list, cost, params)
  else: 
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(lr, model, grads,
                                      inp_list, cost, params)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())

  # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
  # Hence in case of coco/flickr this will 5* no of images
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  inner_loop =   params['sim_minibatch'] if params['sim_minibatch'] > 0 else 1
  max_iters = max_iters / inner_loop 
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs/ inner_loop))
  top_val_ppl2 = -1
  smooth_train_cost = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  len_hist = defaultdict(int)
  
  ## Initialize the model parameters from the checkpoint file if we are resuming training
  if params['checkpoint_file_name'] != None:
    zipp(model_init_from,model)
    zipp(rg_init,rg)
    print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
      checkpoint_init['perplexity']))
  elif params['init_from_imagernn'] != None:
    # Initialize word vecs and image emb from generative model file
    rnnCv = pickle.load(open(params['init_from_imagernn'], 'rb'))
    model['Wemb'].set_value(rnnCv['model']['Wemb'])
    model['WIemb'].set_value(rnnCv['model']['WIemb_aux'])
    misc['wordtoix'] = rnnCv['wordtoix']
    misc['ixtoword'] = rnnCv['ixtoword']
    print("\n Initialized Word embedding and Image embeddings from gen mode %s" % (params['init_from_imagernn']))


  use_dropout.set_value(1.)
  #################### Main Loop ############################################
  for it in xrange(max_iters):
    t0 = time.time()
    # fetch a batch of data
    cost_inner = np.zeros((inner_loop,),dtype=np.float32)
    if params['sim_minibatch'] > 0:
        for i_l in xrange(inner_loop):
            batch,pos_samp_sent = dp.sampPosNegSentSamps(params['batch_size'],params['mode'],thresh=0.3) 
            real_inp_list, lenS = prepare_data(batch,misc['wordtoix'],maxlen=params['maxlen'],pos_samp=pos_samp,prep_for=params['eval_model'])
            if params['fine_tune'] == 1:
               real_inp_list.append(pos_samp_sent)
            cost_inner[i_l] = f_grad_accum(*real_inp_list)
    else:
        batch,pos_samp_sent = dp.sampPosNegSentSamps(params['batch_size'],params['mode'],thresh=0.3)
        real_inp_list, lenS = prepare_data(batch,misc['wordtoix'],maxlen=params['maxlen'],pos_samp=pos_samp,prep_for=params['eval_model'])
        if params['fine_tune'] == 1:
           real_inp_list.append(pos_samp_sent)
    # Enable using dropout in training 
    cost = f_grad_shared(*real_inp_list)
    f_update(params['learning_rate'])
    dt = time.time() - t0
   
    # Reset accumulated gradients to 0
    if params['sim_minibatch'] > 0:
        f_clr()
    #print 'model: ' + ' '.join([str(np.isnan(model[m].get_value()).any()) for m in model])
    #print 'rg: ' +' '.join([str(np.isnan(rg[i].get_value()).any()) for i in xrange(len(rg))])
    #print 'zg: ' + ' '.join([str(np.isnan(zg[i].get_value()).any()) for i in xrange(len(zg))])
    #print 'ud: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])
    #import pdb; pdb.set_trace()
    #print 'udAft: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])

    # print training statistics
    epoch = it*inner_loop * 1.0 / num_iters_one_epoch
    total_cost = (np.e**-cost + (np.e**(-cost_inner)).sum()*(params['sim_minibatch'] > 0))/ (1 + params['sim_minibatch'])
    #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
    #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
    #         train_ppl2, smooth_train_cost)
    if it == 0: smooth_train_cost = total_cost 
    else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * total_cost

    tnow = time.time()
    if tnow > last_status_write_time + 60*1: # every now and then lets write a report
      print '%d/%d batch done in %.3fs. at epoch %.2f. Prob now is %.3f' % (it, max_iters, dt, \
		epoch, smooth_train_cost)
      last_status_write_time = tnow
      jstatus = {}
      jstatus['time'] = datetime.datetime.now().isoformat()
      jstatus['iter'] = (it, max_iters)
      jstatus['epoch'] = (epoch, max_epochs)
      jstatus['time_per_batch'] = dt
      jstatus['val_ppl2'] = val_ppl2 # just write the last available one
      json_worker_status['history'].append(jstatus)
      status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
      #import pdb; pdb.set_trace()
      try:
        json.dump(json_worker_status, open(status_file, 'w'))
      except Exception, e: # todo be more clever here
        print 'tried to write worker status into %s but got error:' % (status_file, )
        print e
    
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      # Disable using dropout in validation 
      use_dropout.set_value(0.)

      val_ppl2 = eval_split_theano('val', dp, model, params, misc,f_eval) # perform the evaluation on VAL set
      if epoch - params['lr_decay_st_epoch'] >= 0:
        params['learning_rate'] = params['learning_rate'] * params['lr_decay']
        params['lr_decay_st_epoch'] += 1
      
      print 'validation perplexity = %f, lr = %f' % (val_ppl2, params['learning_rate'])
      if params['sample_by_len'] == 1:
        print len_hist

      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          #top_val_ppl2 = val_ppl2
          filename = '%s_checkpoint_%s_%s_%s_%.2f_%.2f.p' % (params['eval_model'], params['dataset'], host, params['fappend'],val_ppl2,smooth_train_cost)
          filepath = os.path.join(params['checkpoint_output_directory'], filename)
          model_npy = unzip(model)
          rgrads_npy = unzip(rg)
          checkpoint = {}
          checkpoint['it'] = it
          checkpoint['epoch'] = epoch
          checkpoint['model'] = model_npy
          checkpoint['rgrads'] = rgrads_npy
          checkpoint['params'] = params
          checkpoint['perplexity'] = val_ppl2
          checkpoint['wordtoix'] = misc['wordtoix']
          checkpoint['ixtoword'] = misc['ixtoword']
          try:
            pickle.dump(checkpoint, open(filepath, "wb"))
            print 'saved checkpoint in %s' % (filepath, )
          except Exception, e: # todo be more clever here
            print 'tried to write checkpoint into %s but got error: ' % (filepath, )
            print e

      use_dropout.set_value(1.)
示例#4
0
def main(params):
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(params)
    # Initialize the optimizer
    solver = Solver(params['solver'])

    params['image_feat_size'] = dp.img_feat_size
    params['aux_inp_size'] = dp.aux_inp_size

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)

    if params['fine_tune'] == 1:
        params['mode'] = 'multi_choice_mode' if params[
            'mc_mode'] == 1 else 'multimodal_lstm'
        if params['checkpoint_file_name'] != None:
            #params['batch_size'] = dp.dataset['batchsize']
            misc['wordtoix'] = checkpoint_init['wordtoix']
            misc['ixtoword'] = checkpoint_init['ixtoword']
        batch_size = 1
        num_sentences_total = dp.getSplitSize('train', ofwhat='images')
    else:
        params['mode'] = 'batchtrain'
        batch_size = params['batch_size']
        num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')

    params['vocabulary_size'] = len(misc['wordtoix'])
    pos_samp = np.arange(batch_size, dtype=np.int32)

    # This initializes the model parameters and does matrix initializations
    evalModel = decodeEvaluator(params)
    model, misc['update'], misc['regularize'] = (evalModel.model_th,
                                                 evalModel.updateP,
                                                 evalModel.regularize)

    #----------------- If we are using feature encoders -----------------------
    if params['use_encoder_for'] & 1:
        imgFeatEncoder = RecurrentFeatEncoder(params['image_feat_size'],
                                              params['sent_encoding_size'],
                                              params,
                                              mdl_prefix='img_enc_',
                                              features=dp.features.T)
        mdlLen = len(model.keys())
        model.update(imgFeatEncoder.model_th)
        assert (len(model.keys()) == (mdlLen +
                                      len(imgFeatEncoder.model_th.keys())))
        #misc['update'].extend(imgFeatEncoder.update_list)
        misc['regularize'].extend(imgFeatEncoder.regularize)
        (imgenc_use_dropout, imgFeatEnc_inp, xI,
         updatesLSTMImgFeat) = imgFeatEncoder.build_model(model, params)
    else:
        xI = None
        imgFeatEnc_inp = []

    # Define the computational graph for relating the input image features and word indices to the
    # log probability cost funtion.
    (use_dropout, inp_list_eval, miscOuts, cost, predTh,
     model) = evalModel.build_model(model,
                                    params,
                                    xI=xI,
                                    prior_inp_list=imgFeatEnc_inp)

    inp_list = imgFeatEnc_inp + inp_list_eval

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation
    f_eval = theano.function(inp_list, cost, name='f_eval')

    # Add the regularization cost. Since this is specific to trainig and doesn't get included when we
    # evaluate the cost on test or validation data, we leave it here outside the model definition
    if params['regc'] > 0.:
        reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
        reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']),
                                          name='reg_c')
        for p in misc['regularize']:
            reg_cost += (model[p]**2).sum()
            reg_cost *= 0.5 * reg_c
        cost[0] += (reg_cost / params['batch_size'])

    # Now let's build a gradient computation graph and rmsprop update mechanism
    grads = tensor.grad(cost[0], wrt=model.values())
    lr = tensor.scalar(name='lr', dtype=config.floatX)
    if params['sim_minibatch'] > 0:
        f_grad_accum, f_clr, ag = solver.accumGrads(model, grads, inp_list,
                                                    cost,
                                                    params['sim_minibatch'])
        f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(
            lr, model, ag, inp_list, cost, params)
    else:
        f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(
            lr, model, grads, inp_list, cost, params)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())

    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    inner_loop = params['sim_minibatch'] if params['sim_minibatch'] > 0 else 1
    max_iters = max_iters / inner_loop
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs / inner_loop))
    top_val_ppl2 = -1
    smooth_train_cost = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    smooth_error_rate = 100.
    error_rate = 0.
    prev_it = -1
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []

    len_hist = defaultdict(int)

    ## Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != None:
        zipp(model_init_from, model)
        zipp(rg_init, rg)
        print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
          checkpoint_init['perplexity']))
    elif params['init_from_imagernn'] != None:
        # Initialize word vecs and image emb from generative model file
        rnnCv = pickle.load(open(params['init_from_imagernn'], 'rb'))
        model['Wemb'].set_value(rnnCv['model']['Wemb'])
        model['WIemb'].set_value(rnnCv['model']['WIemb_aux'])
        misc['wordtoix'] = rnnCv['wordtoix']
        misc['ixtoword'] = rnnCv['ixtoword']
        print(
            "\n Initialized Word embedding and Image embeddings from gen mode %s"
            % (params['init_from_imagernn']))

    write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']

    use_dropout.set_value(1.)
    #################### Main Loop ############################################
    for it in xrange(max_iters):
        t0 = time.time()

        if params['use_encoder_for'] & 1:
            imgenc_use_dropout.set_value(float(params['use_dropout']))

        # fetch a batch of data
        cost_inner = np.zeros((inner_loop, ), dtype=np.float32)
        if params['sim_minibatch'] > 0:
            for i_l in xrange(inner_loop):
                batch, pos_samp_sent = dp.sampPosNegSentSamps(
                    params['batch_size'], params['mode'], thresh=0.3)
                eval_inp_list, lenS = prepare_data(
                    batch,
                    misc['wordtoix'],
                    maxlen=params['maxlen'],
                    pos_samp=pos_samp,
                    prep_for=params['eval_model'],
                    use_enc_for=params['use_encoder_for'])
                if params['fine_tune'] == 1:
                    eval_inp_list.append(pos_samp_sent)
                cost_inner[i_l] = f_grad_accum(*eval_inp_list)
        else:
            batch, pos_samp_sent = dp.sampPosNegSentSamps(params['batch_size'],
                                                          params['mode'],
                                                          thresh=0.3)
            enc_inp_list = prepare_seq_features(
                batch,
                use_enc_for=params['use_encoder_for'],
                use_shared_mem=params['use_shared_mem_enc'])
            eval_inp_list, lenS = prepare_data(
                batch,
                misc['wordtoix'],
                maxlen=params['maxlen'],
                pos_samp=pos_samp,
                prep_for=params['eval_model'],
                use_enc_for=params['use_encoder_for'])
            if params['fine_tune'] == 1:
                eval_inp_list.append(pos_samp_sent)

        real_inp_list = enc_inp_list + eval_inp_list

        # Enable using dropout in training
        cost = f_grad_shared(*real_inp_list)
        f_update(params['learning_rate'])
        dt = time.time() - t0

        # Reset accumulated gradients to 0
        if params['sim_minibatch'] > 0:
            f_clr()
        #print 'model: ' + ' '.join([str(np.isnan(model[m].get_value()).any()) for m in model])
        #print 'rg: ' +' '.join([str(np.isnan(rg[i].get_value()).any()) for i in xrange(len(rg))])
        #print 'zg: ' + ' '.join([str(np.isnan(zg[i].get_value()).any()) for i in xrange(len(zg))])
        #print 'ud: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])
        #import pdb; pdb.set_trace()
        #print 'udAft: ' + ' '.join([str(np.isnan(ud[i].get_value()).any()) for i in xrange(len(ud))])

        # print training statistics
        epoch = it * inner_loop * 1.0 / num_iters_one_epoch
        total_cost = (np.e**(-cost[0]) + (np.e**(-cost_inner)).sum() *
                      (params['sim_minibatch'] > 0)) / (
                          1 + params['sim_minibatch'])
        #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
        #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
        #         train_ppl2, smooth_train_cost)
        if it == 0: smooth_train_cost = total_cost
        else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * total_cost
        error_rate += 100.0 * float((cost[2] < 0.).sum()) / batch_size

        margin_strength = cost[2].sum()
        smooth_error_rate = 0.99 * smooth_error_rate + 0.01 * 100.0 * (
            float(cost[1]) / batch_size) if it > 0 else 100.0 * (
                float(cost[1]) / batch_size)

        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            print '%d/%d batch done in %.3fs. at epoch %.2f. Prob now is %.4f, Error '\
                    'rate is %.3f%%, Margin %.2f, negMarg=%.2f' % (it, max_iters, dt, \
                    epoch, smooth_train_cost, smooth_error_rate,
                    margin_strength, error_rate/(it-prev_it))
            error_rate = 0.
            prev_it = it
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['val_ppl2'] = val_ppl2  # just write the last available one
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            #import pdb; pdb.set_trace()
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            # Disable using dropout in validation
            use_dropout.set_value(0.)
            if params['use_encoder_for'] & 1:
                imgenc_use_dropout.set_value(0.)

            val_ppl2 = eval_split_theano(
                'val', dp, model, params, misc,
                f_eval)  # perform the evaluation on VAL set
            if epoch - params['lr_decay_st_epoch'] >= 0:
                params['learning_rate'] = params['learning_rate'] * params[
                    'lr_decay']
                params['lr_decay_st_epoch'] += 1

            print 'validation perplexity = %f, lr = %f' % (
                val_ppl2, params['learning_rate'])
            #if params['sample_by_len'] == 1:
            #  print len_hist

            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2
                    filename = '%s_checkpoint_%s_%s_%s_%.2f_%.2f.p' % (
                        params['eval_model'], params['dataset'], host,
                        params['fappend'], smooth_error_rate, val_ppl2)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    model_npy = unzip(model)
                    rgrads_npy = unzip(rg)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model_npy
                    checkpoint['rgrads'] = rgrads_npy
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_ppl2
                    checkpoint['wordtoix'] = misc['wordtoix']
                    checkpoint['ixtoword'] = misc['ixtoword']
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print 'saved checkpoint in %s' % (filepath, )
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e

            use_dropout.set_value(1.)
示例#5
0
def main(params):
    batch_size = params['batch_size']
    dataset = params['dataset']
    word_count_threshold = params['word_count_threshold']
    do_grad_check = params['do_grad_check']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    params['mode'] = 'CPU'

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)
    # delegate the initialization of the model to the Generator class
    BatchGenerator = decodeGenerator(params)
    init_struct = BatchGenerator.init(params, misc)
    model, misc['update'], misc['regularize'] = (init_struct['model'],
                                                 init_struct['update'],
                                                 init_struct['regularize'])

    if params['mode'] == 'GPU':
        # force overwrite here. This is a bit of a hack, not happy about it
        model['bd'] = gp.garray(
            bias_init_vector.reshape(1, bias_init_vector.size))
    else:
        model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['update'])
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['regularize'])
    print 'number of learnable parameters total: %d' % (sum(
        model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    max_iters = 1
    for it in xrange(max_iters):
        if abort: break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct['cost']
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
              % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
                 train_ppl2, smooth_train_ppl2)

        # perform gradient check if desired, with a bit of a burnin time (10 iterations)
        #if it == 10 and do_grad_check:
        #  solver.gradCheck(batch, model, costfun)
        #  print 'done gradcheck. continue?'
        #  raw_input()
        #
        ## detect if loss is exploding and kill the job if so
        #total_cost = cost['total_cost']
        #if it == 0:
        #  total_cost0 = total_cost # store this initial cost
        #if total_cost > total_cost0 * 2:
        #  print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
        #  abort = True # set the abort flag, we'll break out
        #
        ## logging: write JSON files for visual inspection of the training
        #tnow = time.time()
        #if tnow > last_status_write_time + 60*1: # every now and then lets write a report
        #  last_status_write_time = tnow
        #  jstatus = {}
        #  jstatus['time'] = datetime.datetime.now().isoformat()
        #  jstatus['iter'] = (it, max_iters)
        #  jstatus['epoch'] = (epoch, max_epochs)
        #  jstatus['time_per_batch'] = dt
        #  jstatus['smooth_train_ppl2'] = smooth_train_ppl2
        #  jstatus['val_ppl2'] = val_ppl2 # just write the last available one
        #  jstatus['train_ppl2'] = train_ppl2
        #  json_worker_status['history'].append(jstatus)
        #  status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
        #  try:
        #    json.dump(json_worker_status, open(status_file, 'w'))
        #  except Exception, e: # todo be more clever here
        #    print 'tried to write worker status into %s but got error:' % (status_file, )
        #    print e
        #
        ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        #is_last_iter = (it+1) == max_iters
        #if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
        #  val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
        #  print 'validation perplexity = %f' % (val_ppl2, )
        #  write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
        #  if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        #    if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
        #      # if we beat a previous record or if this is the first time
        #      # AND we also beat the user-defined threshold or it doesnt exist
        #      top_val_ppl2 = val_ppl2
        #      filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (dataset, host, params['fappend'], val_ppl2)
        #      filepath = os.path.join(params['checkpoint_output_directory'], filename)
        #      checkpoint = {}
        #      checkpoint['it'] = it
        #      checkpoint['epoch'] = epoch
        #      checkpoint['model'] = model
        #      checkpoint['params'] = params
        #      checkpoint['perplexity'] = val_ppl2
        #      checkpoint['wordtoix'] = misc['wordtoix']
        #      checkpoint['ixtoword'] = misc['ixtoword']
        #      try:
        #        pickle.dump(checkpoint, open(filepath, "wb"))
        #        print 'saved checkpoint in %s' % (filepath, )
        #      except Exception, e: # todo be more clever here
        #        print 'tried to write checkpoint into %s but got error: ' % (filepat, )
        #        print e
        cuda.close()
示例#6
0
def main(params):
  batch_size = params['batch_size']
  dataset = params['dataset']
  word_count_threshold = params['word_count_threshold']
  do_grad_check = params['do_grad_check']
  max_epochs = params['max_epochs']


  # fetch the data provider
  dp = getDataProvider(dataset)

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)

  # delegate the initialization of the model to the Generator class
  BatchGenerator = decodeGenerator(params)
  init_struct = BatchGenerator.init(params, misc)
  model, misc['update'], misc['regularize'] = (init_struct['model'], init_struct['update'], init_struct['regularize'])

  # force overwrite here. This is a bit of a hack, not happy about it
  model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(model.keys())
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
  print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
  print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

  if params.get('init_model_from', ''):
    # load checkpoint
    checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
    model = checkpoint['model'] # overwrite the model

  # initialize the Solver and the cost function
  solver = Solver()
  def costfun(batch, model):
    # wrap the cost function to abstract some things away from the Solver
    return RNNGenCost(batch, model, params, misc)

  # calculate how many iterations we need
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  abort = False
  top_val_ppl2 = -1
  smooth_train_ppl2 = len(misc['ixtoword']) # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  import csv
  csvfile = open(os.path.join(params['outdir'],params['generator']+'.csv'),'wb')
  csvout = csv.writer(csvfile,delimiter=',',quotechar='"')

  csv_val_file = open(os.path.join(params['outdir'],params['generator']+'_val.csv'),'wb')
  csv_val_out = csv.writer(csv_val_file,delimiter=',',quotechar='"')

  for it in xrange(max_iters):
    if abort: break
    t0 = time.time()
    # fetch a batch of data
    batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
    # evaluate cost, gradient and perform parameter update
    step_struct = solver.step(batch, model, costfun, **params)
    cost = step_struct['cost']
    dt = time.time() - t0

    # print training statistics
    train_ppl2 = step_struct['stats']['ppl2']
    smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
    if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out
    epoch = it * 1.0 / num_iters_one_epoch
    print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
          % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
             train_ppl2, smooth_train_ppl2)

    csvout.writerow([it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'],train_ppl2, smooth_train_ppl2])
    csvfile.flush()

    if not host=='oliver-Aurora-R4':
      sys.stdout.flush()

    # os.system('./update_plots.sh')

    # perform gradient check if desired, with a bit of a burnin time (10 iterations)
    if it == 10 and do_grad_check:
      print 'disabling dropout for gradient check...'
      params['drop_prob_encoder'] = 0
      params['drop_prob_decoder'] = 0
      solver.gradCheck(batch, model, costfun)
      print 'done gradcheck, exitting.'
      sys.exit() # hmmm. probably should exit here

    # detect if loss is exploding and kill the job if so
    total_cost = cost['total_cost']
    if it == 0:
      total_cost0 = total_cost # store this initial cost
    if total_cost > total_cost0 * 2:
      print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
      abort = True # set the abort flag, we'll break out

    # logging: write JSON files for visual inspection of the training
    tnow = time.time()
    if tnow > last_status_write_time + 60*1: # every now and then lets write a report
      last_status_write_time = tnow
      jstatus = {}
      jstatus['time'] = datetime.datetime.now().isoformat()
      jstatus['iter'] = (it, max_iters)
      jstatus['epoch'] = (epoch, max_epochs)
      jstatus['time_per_batch'] = dt
      jstatus['smooth_train_ppl2'] = smooth_train_ppl2
      jstatus['val_ppl2'] = val_ppl2 # just write the last available one
      jstatus['train_ppl2'] = train_ppl2
      json_worker_status['history'].append(jstatus)
      status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
      try:
        json.dump(json_worker_status, open(status_file, 'w'))
      except Exception, e: # todo be more clever here
        print 'tried to write worker status into %s but got error:' % (status_file, )
        print e

    # perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
      print 'validation perplexity = %f' % (val_ppl2, )

      cp_pred = {}
      cp_pred['it'] = it
      cp_pred['epoch'] = epoch
      cp_pred['model'] = model
      cp_pred['params'] = params
      cp_pred['perplexity'] = val_ppl2
      cp_pred['wordtoix'] = misc['wordtoix']
      cp_pred['ixtoword'] = misc['ixtoword']
      cp_pred['algorithm'] = params['generator']
      cp_pred['outdir'] = params['outdir']

      if is_last_iter:
        scores = eval_sentence_predictions.run(cp_pred)
        csv_val_out.writerow([it, max_iters, dt, epoch, val_ppl2, scores[0],scores[1],scores[2],scores[3],scores[4],scores[5],scores[6]])
        csv_val_file.flush()
	omail.send('job finished'+params['generator'],'done')


      # abort training if the perplexity is no good
      min_ppl_or_abort = params['min_ppl_or_abort']
      if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
        print 'aborting job because validation perplexity %f < %f' % (val_ppl2, min_ppl_or_abort)
        abort = True # abort the job

      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if  val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          top_val_ppl2 = val_ppl2
          filename = 'model_%s_checkpoint_%s_%s_%s_%.2f.p' % (params['generator'],dataset, host, params['fappend'], val_ppl2)
          filepath = os.path.join(params['outdir'], filename)
          checkpoint = {}
          checkpoint['it'] = it
          checkpoint['epoch'] = epoch
          checkpoint['model'] = model
          checkpoint['params'] = params
          checkpoint['perplexity'] = val_ppl2
          checkpoint['wordtoix'] = misc['wordtoix']
          checkpoint['ixtoword'] = misc['ixtoword']

          checkpoint['algorithm'] = params['generator']
          checkpoint['outdir'] = params['outdir']

          try:
            pickle.dump(checkpoint, open(filepath, "wb"))
            print 'saved checkpoint in %s' % (filepath, )
          except Exception, e: # todo be more clever here
            print 'tried to write checkpoint into %s but got error: ' % (filepat, )
            print e

          scores = eval_sentence_predictions.run(checkpoint)
          csv_val_out.writerow([it, max_iters, dt, epoch, val_ppl2, scores[0],scores[1],scores[2],scores[3],scores[4],scores[5],scores[6]])
          csv_val_file.flush()
def main(params):
    batch_size = params['batch_size']
    dataset = params['dataset']  # name of the dataset flickr8k, flickr30k..
    word_count_threshold = params['word_count_threshold']
    do_grad_check = params['do_grad_check']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(dataset)
    completeData = dp.getData('train')

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    #print 'dp.iterSentences', dp.iterSentences('train')
    misc['wordtoix'], misc[
        'ixtoword'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), word_count_threshold)
    #printWordEmbedding(dp.iterSentences('train'),misc['wordtoix'])

    #print 'type;',type(completeData)
    # calculate weights of all unique words in vocab
    weightComputedData = calculateWeights(misc['wordtoix'], misc['ixtoword'],
                                          completeData)

    weightCalculationMethodSec()
    weightComputedData = getWeightsMethod2()
    print 'Done:'

    # delegate the initialization of the model to the Generator class
    BatchGenerator = GenericBatchGenerator()
    #decodeGenerator(params)

    # initialize encoder and decoder weight matrices
    init_struct = BatchGenerator.init(params, misc)
    model, misc['update'], misc['regularize'] = (init_struct['model'],
                                                 init_struct['update'],
                                                 init_struct['regularize'])

    # force overwrite here. This is a bit of a hack, not happy about it
    model['bd'] = bias_init_vector.reshape(
        1, bias_init_vector.size)  # remove and check

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['update'])
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['regularize'])
    print 'number of learnable parameters total: %d' % (sum(
        model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    if params.get('init_model_from', ''):
        # load checkpoint
        checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
        model = checkpoint['model']  # overwrite the model

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc, weightComputedData)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    for it in xrange(max_iters):
        if abort: break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct['cost']
        dt = time.time() - t0

        # print training statistics
        #train_ppl2 = step_struct['stats']['ppl2']
        #if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out

        epoch = it * 1.0 / num_iters_one_epoch
        print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f' \
              % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'])

        total_cost = cost['total_cost']
        if it == 0:
            total_cost0 = total_cost
        if total_cost > total_cost0 * 2:
            print 'Aborting, cost seems to be exploding. '
            abort = True

        if (it + 1) == max_iters:
            top_val_ppl2 = val_ppl2
            filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (
                dataset, host, params['fappend'], val_ppl2)
            filepath = os.path.join(params['checkpoint_output_directory'],
                                    filename)
            checkpoint = {}
            checkpoint['it'] = it
            checkpoint['epoch'] = epoch
            checkpoint['model'] = model
            checkpoint['params'] = params
            checkpoint['perplexity'] = val_ppl2
            checkpoint['wordtoix'] = misc['wordtoix']
            checkpoint['ixtoword'] = misc['ixtoword']
            try:
                pickle.dump(checkpoint, open(filepath, "wb"))
                print 'saved checkpoint in %s' % (filepath, )
            except Exception, e:
                print 'tried to write checkpoint into %s but got error: ' % (
                    filepath, )
                print e
示例#8
0
def main(params, split):

    #import pdb; pdb.set_trace()

    batch_size = params['batch_size']
    dataset = params['dataset']
    feature_file = params['feature_file']
    class_count_threshold = params['class_count_threshold']
    do_grad_check = params['do_grad_check']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    json_file = 'dataset_mmdb_book_fps_30_samplesize_25_split_%d.json' % (
        split)

    # fetch the data provider
    dp = getDataProvider(dataset, feature_file, json_file)

    misc = {
    }  # stores various misc items that need to be passed around the framework

    # go over all training classes and find the vocabulary we want to use, i.e. the classes that occur
    # at least class_count_threshold number of times
    misc['classtoix'], misc[
        'ixtoclass'], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences('train'), class_count_threshold)

    # delegate the initialization of the model to the Generator class
    BatchGenerator = decodeGenerator(params)
    init_struct = BatchGenerator.init(params, misc)
    model, misc['update'], misc['regularize'] = (init_struct['model'],
                                                 init_struct['update'],
                                                 init_struct['regularize'])

    # force overwrite here. This is a bit of a hack, not happy about it
    model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['update'])
    print 'updating: ' + ', '.join('%s [%dx%d]' %
                                   (k, model[k].shape[0], model[k].shape[1])
                                   for k in misc['regularize'])
    print 'number of learnable parameters total: %d' % (sum(
        model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    if params.get('init_model_from', ''):
        # load checkpoint
        checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
        model = checkpoint['model']  # overwrite the model

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(
        misc['ixtoclass'])  # initially size of dictionary of confusion
    val_ppl2 = len(misc['ixtoclass'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status['params'] = params
    json_worker_status['history'] = []
    lastsavedcheckpoint = ''
    for it in xrange(max_iters):
        if abort: break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct['cost']
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
              % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
                 train_ppl2, smooth_train_ppl2)

        print 'last saved checkpoint in %s' % (lastsavedcheckpoint, )
        # perform gradient check if desired, with a bit of a burnin time (10 iterations)
        if it == 10 and do_grad_check:
            print 'disabling dropout for gradient check...'
            params['drop_prob_encoder'] = 0
            params['drop_prob_decoder'] = 0
            solver.gradCheck(batch, model, costfun)
            print 'done gradcheck, exitting.'
            sys.exit()  # hmmm. probably should exit here

        # detect if loss is exploding and kill the job if so
        total_cost = cost['total_cost']
        if it == 0:
            total_cost0 = total_cost  # store this initial cost
        if total_cost > total_cost0 * 2:
            print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
            abort = True  # set the abort flag, we'll break out

        # logging: write JSON files for visual inspection of the training
        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['smooth_train_ppl2'] = smooth_train_ppl2
            jstatus['val_ppl2'] = val_ppl2  # just write the last available one
            jstatus['train_ppl2'] = train_ppl2
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        # perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            val_ppl2 = eval_split('val', dp, model, params,
                                  misc)  # perform the evaluation on VAL set
            print 'validation perplexity = %f' % (val_ppl2, )

            # abort training if the perplexity is no good
            min_ppl_or_abort = params['min_ppl_or_abort']
            if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
                print 'aborting job because validation perplexity %f < %f' % (
                    val_ppl2, min_ppl_or_abort)
                abort = True  # abort the job

            write_checkpoint_ppl_threshold = params[
                'write_checkpoint_ppl_threshold']
            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2

                    filename = 'model_checkpoint_%s_%s_%s_alpha_%2.2f_beta_%2.2f_split_%d.p' % (
                        dataset, host, params['fappend'], params['alpha'],
                        params['beta'], split)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_ppl2
                    checkpoint['classtoix'] = misc['classtoix']
                    checkpoint['ixtoclass'] = misc['ixtoclass']
                    checkpoint['json_file'] = json_file

                    try:
                        if not (params['fappend'] == 'test'):
                            # if it == max_iters - 1 :
                            pickle.dump(checkpoint, open(filepath, "wb"))
                            print 'saved checkpoint in %s' % (filepath, )
                            lastsavedcheckpoint = filepath
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e
def main(params):
    batch_size = params["batch_size"]
    word_count_threshold = params["word_count_threshold"]
    max_epochs = params["max_epochs"]
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(params)
    # Initialize the optimizer
    solver = Solver(params["solver"])

    params["aux_inp_size"] = dp.aux_inp_size
    params["image_feat_size"] = dp.img_feat_size

    print "Image feature size is %d, and aux input size is %d" % (params["image_feat_size"], params["aux_inp_size"])

    misc = {}  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    if params["class_out_factoring"] == 0:
        misc["wordtoix"], misc["ixtoword"], bias_init_vector = preProBuildWordVocab(
            dp.iterSentences("train"), word_count_threshold
        )
    else:
        [misc["wordtoix"], misc["classes"]], [misc["ixtoword"], misc["clstotree"], misc["ixtoclsinfo"]], [
            bias_init_vector,
            bias_init_inter_class,
        ] = preProBuildWordVocab(dp.iterSentences("train"), word_count_threshold, params)
        params["nClasses"] = bias_init_inter_class.shape[0]

    params["vocabulary_size"] = len(misc["wordtoix"])
    params["output_size"] = len(misc["ixtoword"])  # these should match though
    print len(misc["wordtoix"]), len(misc["ixtoword"])

    # This initializes the model parameters and does matrix initializations
    lstmGenerator = LSTMGenerator(params)
    model, misc["update"], misc["regularize"] = (
        lstmGenerator.model_th,
        lstmGenerator.update_list,
        lstmGenerator.regularize,
    )

    # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
    # This is a bit of a hack, not happy about it
    model["bd"].set_value(bias_init_vector.astype(config.floatX))
    if params["class_out_factoring"] == 1:
        model["bdCls"].set_value(bias_init_inter_class.astype(config.floatX))

    # Define the computational graph for relating the input image features and word indices to the
    # log probability cost funtion.
    (use_dropout, inp_list, f_pred_prob, cost, predTh, updatesLSTM) = lstmGenerator.build_model(model, params)

    costGrad = cost[0]
    # Add class uncertainity to final cost
    # if params['class_out_factoring'] == 1:
    #  costGrad += cost[2]
    # Add the regularization cost. Since this is specific to trainig and doesn't get included when we
    # evaluate the cost on test or validation data, we leave it here outside the model definition
    if params["regc"] > 0.0:
        reg_cost = theano.shared(numpy_floatX(0.0), name="reg_c")
        reg_c = tensor.as_tensor_variable(numpy_floatX(params["regc"]), name="reg_c")
        reg_cost = 0.0
        for p in misc["regularize"]:
            reg_cost += (model[p] ** 2).sum()
            reg_cost *= 0.5 * reg_c
        costGrad += reg_cost / params["batch_size"]

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation
    f_eval = theano.function(inp_list, cost, name="f_eval")

    # Now let's build a gradient computation graph and rmsprop update mechanism
    grads = tensor.grad(costGrad, wrt=model.values())
    lr = tensor.scalar(name="lr", dtype=config.floatX)
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(lr, model, grads, inp_list, cost, params)

    print "model init done."
    print "model has keys: " + ", ".join(model.keys())
    # print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
    # print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
    # print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_sentences_total = dp.getSplitSize("train", ofwhat="sentences")
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params["eval_period"]
    eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(misc["ixtoword"])  # initially size of dictionary of confusion
    val_ppl2 = len(misc["ixtoword"])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status["params"] = params
    json_worker_status["history"] = []

    len_hist = defaultdict(int)

    ## Initialize the model parameters from the checkpoint file if we are resuming training
    if params["checkpoint_file_name"] != "None":
        zipp(model_init_from, model)
        zipp(rg_init, rg)
        print (
            "\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n"
            % (checkpoint_init["epoch"], checkpoint_init["perplexity"])
        )

    for it in xrange(max_iters):
        t0 = time.time()
        # fetch a batch of data
        if params["sample_by_len"] == 0:
            batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        else:
            batch, l = dp.getRandBatchByLen(batch_size)
            len_hist[l] += 1

        if params["use_pos_tag"] != "None":
            real_inp_list, lenS = prepare_data(
                batch,
                misc["wordtoix"],
                params["maxlen"],
                sentTagMap,
                misc["ixtoword"],
                rev_sents=params["reverse_sentence"],
            )
        else:
            real_inp_list, lenS = prepare_data(
                batch, misc["wordtoix"], params["maxlen"], rev_sents=params["reverse_sentence"]
            )

        # Enable using dropout in training
        use_dropout.set_value(float(params["use_dropout"]))
        epoch = it * 1.0 / num_iters_one_epoch

        if params["sched_sampling_mode"] != None:
            real_inp_list.append(epoch)

        # evaluate cost, gradient and perform parameter update
        cost = f_grad_shared(*real_inp_list)
        f_update(params["learning_rate"])
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = 2 ** (cost[1] / lenS)  # step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        total_cost = cost[0]
        # print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
        #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
        #         train_ppl2, smooth_train_ppl2)

        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            print "%d/%d batch done in %.3fs. at epoch %.2f. Cost now is %.3f and pplx is %.3f" % (
                it,
                max_iters,
                dt,
                epoch,
                total_cost,
                train_ppl2,
            )
            last_status_write_time = tnow
            jstatus = {}
            jstatus["time"] = datetime.datetime.now().isoformat()
            jstatus["iter"] = (it, max_iters)
            jstatus["epoch"] = (epoch, max_epochs)
            jstatus["time_per_batch"] = dt
            jstatus["smooth_train_ppl2"] = smooth_train_ppl2
            jstatus["val_ppl2"] = val_ppl2  # just write the last available one
            jstatus["train_ppl2"] = train_ppl2
            # if params['class_out_factoring'] == 1:
            #  jstatus['class_cost'] = float(cost[2])
            json_worker_status["history"].append(jstatus)
            status_file = os.path.join(params["worker_status_output_directory"], host + "_status.json")
            # import pdb; pdb.set_trace()
            try:
                json.dump(json_worker_status, open(status_file, "w"))
            except Exception, e:  # todo be more clever here
                print "tried to write worker status into %s but got error:" % (status_file,)
                print e

        ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
            # Disable using dropout in validation
            use_dropout.set_value(0.0)

            val_ppl2 = eval_split_theano("val", dp, model, params, misc, f_eval)  # perform the evaluation on VAL set

            if epoch - params["lr_decay_st_epoch"] >= 0:
                params["learning_rate"] = params["learning_rate"] * params["lr_decay"]
                params["lr_decay_st_epoch"] += 1

            print "validation perplexity = %f, lr = %f" % (val_ppl2, params["learning_rate"])
            if params["sample_by_len"] == 1:
                print len_hist

            write_checkpoint_ppl_threshold = params["write_checkpoint_ppl_threshold"]
            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2
                    filename = "model_checkpoint_%s_%s_%s_%.2f.p" % (
                        params["dataset"],
                        host,
                        params["fappend"],
                        val_ppl2,
                    )
                    filepath = os.path.join(params["checkpoint_output_directory"], filename)
                    model_npy = unzip(model)
                    rgrads_npy = unzip(rg)
                    checkpoint = {}
                    checkpoint["it"] = it
                    checkpoint["epoch"] = epoch
                    checkpoint["model"] = model_npy
                    checkpoint["rgrads"] = rgrads_npy
                    checkpoint["params"] = params
                    checkpoint["perplexity"] = val_ppl2
                    checkpoint["misc"] = misc
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print "saved checkpoint in %s" % (filepath,)
                    except Exception, e:  # todo be more clever here
                        print "tried to write checkpoint into %s but got error: " % (filepath,)
                        print e
示例#10
0
def main(params):
    batch_size = params["batch_size"]
    dataset = params["dataset"]
    word_count_threshold = params["word_count_threshold"]
    do_grad_check = params["do_grad_check"]
    max_epochs = params["max_epochs"]
    host = socket.gethostname()  # get computer hostname

    # fetch the data provider
    dp = getDataProvider(dataset)

    misc = {}  # stores various misc items that need to be passed around the framework

    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    misc["wordtoix"], misc["ixtoword"], bias_init_vector = preProBuildWordVocab(
        dp.iterSentences("train"), word_count_threshold
    )

    # delegate the initialization of the model to the Generator class
    BatchGenerator = decodeGenerator(params)
    init_struct = BatchGenerator.init(params, misc)
    model, misc["update"], misc["regularize"] = (init_struct["model"], init_struct["update"], init_struct["regularize"])

    # force overwrite here. This is a bit of a hack, not happy about it
    model["bd"] = bias_init_vector.reshape(1, bias_init_vector.size)

    print "model init done."
    print "model has keys: " + ", ".join(model.keys())
    print "updating: " + ", ".join("%s [%dx%d]" % (k, model[k].shape[0], model[k].shape[1]) for k in misc["update"])
    print "updating: " + ", ".join("%s [%dx%d]" % (k, model[k].shape[0], model[k].shape[1]) for k in misc["regularize"])
    print "number of learnable parameters total: %d" % (
        sum(model[k].shape[0] * model[k].shape[1] for k in misc["update"]),
    )

    if params.get("init_model_from", ""):
        # load checkpoint
        checkpoint = pickle.load(open(params["init_model_from"], "rb"))
        model = checkpoint["model"]  # overwrite the model
        print checkpoint["model"]

    # initialize the Solver and the cost function
    solver = Solver()

    def costfun(batch, model):
        # wrap the cost function to abstract some things away from the Solver
        return RNNGenCost(batch, model, params, misc)

    # calculate how many iterations we need
    num_sentences_total = dp.getSplitSize("train", ofwhat="sentences")
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params["eval_period"]
    eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
    abort = False
    top_val_ppl2 = -1
    smooth_train_ppl2 = len(misc["ixtoword"])  # initially size of dictionary of confusion
    val_ppl2 = len(misc["ixtoword"])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    json_worker_status["params"] = params
    json_worker_status["history"] = []
    for it in xrange(max_iters):
        if abort:
            break
        t0 = time.time()
        # fetch a batch of data
        batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        # evaluate cost, gradient and perform parameter update
        step_struct = solver.step(batch, model, costfun, **params)
        cost = step_struct["cost"]
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = step_struct["stats"]["ppl2"]
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2  # smooth exponentially decaying moving average
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out
        epoch = it * 1.0 / num_iters_one_epoch
        print "%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)" % (
            it,
            max_iters,
            dt,
            epoch,
            cost["loss_cost"],
            cost["reg_cost"],
            train_ppl2,
            smooth_train_ppl2,
        )

        # perform gradient check if desired, with a bit of a burnin time (10 iterations)
        if it == 10 and do_grad_check:
            print "disabling dropout for gradient check..."
            params["drop_prob_encoder"] = 0
            params["drop_prob_decoder"] = 0
            solver.gradCheck(batch, model, costfun)
            print "done gradcheck, exitting."
            sys.exit()  # hmmm. probably should exit here

        # detect if loss is exploding and kill the job if so
        total_cost = cost["total_cost"]
        if it == 0:
            total_cost0 = total_cost  # store this initial cost
        if total_cost > total_cost0 * 2:
            print "Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?"
            abort = True  # set the abort flag, we'll break out

        # logging: write JSON files for visual inspection of the training
        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            last_status_write_time = tnow
            jstatus = {}
            jstatus["time"] = datetime.datetime.now().isoformat()
            jstatus["iter"] = (it, max_iters)
            jstatus["epoch"] = (epoch, max_epochs)
            jstatus["time_per_batch"] = dt
            jstatus["smooth_train_ppl2"] = smooth_train_ppl2
            jstatus["val_ppl2"] = val_ppl2  # just write the last available one
            jstatus["train_ppl2"] = train_ppl2
            json_worker_status["history"].append(jstatus)
            status_file = os.path.join(params["worker_status_output_directory"], host + "_status.json")
            try:
                json.dump(json_worker_status, open(status_file, "w"))
            except Exception, e:  # todo be more clever here
                print "tried to write worker status into %s but got error:" % (status_file,)
                print e

        # perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
            val_ppl2 = eval_split("val", dp, model, params, misc)  # perform the evaluation on VAL set
            print "validation perplexity = %f" % (val_ppl2,)

            # abort training if the perplexity is no good
            min_ppl_or_abort = params["min_ppl_or_abort"]
            if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
                print "aborting job because validation perplexity %f < %f" % (val_ppl2, min_ppl_or_abort)
                abort = True  # abort the job

            write_checkpoint_ppl_threshold = params["write_checkpoint_ppl_threshold"]
            if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
                if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_ppl2 = val_ppl2
                    filename = "model_checkpoint_%s_%s_%s_%.2f.p" % (dataset, host, params["fappend"], val_ppl2)
                    filepath = os.path.join(params["checkpoint_output_directory"], filename)
                    checkpoint = {}
                    checkpoint["it"] = it
                    checkpoint["epoch"] = epoch
                    checkpoint["model"] = model
                    checkpoint["params"] = params
                    checkpoint["perplexity"] = val_ppl2
                    checkpoint["wordtoix"] = misc["wordtoix"]
                    checkpoint["ixtoword"] = misc["ixtoword"]
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print "saved checkpoint in %s" % (filepath,)
                    except Exception, e:  # todo be more clever here
                        print "tried to write checkpoint into %s but got error: " % (filepat,)
                        print e
def main(params):
  batch_size = params['batch_size']
  word_count_threshold = params['word_count_threshold']
  max_epochs = params['max_epochs']
  host = socket.gethostname() # get computer hostname

  # fetch the data provider
  dp = getDataProvider(params)
  
  # Initialize the optimizer 
  solver = Solver(params['solver'])

  params['aux_inp_size'] = dp.aux_inp_size
  params['image_feat_size'] = dp.img_feat_size

  print 'Image feature size is %d, and aux input size is %d'%(params['image_feat_size'],params['aux_inp_size'])

  misc = {} # stores various misc items that need to be passed around the framework

  # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
  # at least word_count_threshold number of times
  misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
  params['vocabulary_size'] = len(misc['wordtoix'])
  params['output_size'] = len(misc['ixtoword']) # these should match though
  params['use_dropout'] = 1 

  # This initializes the model parameters and does matrix initializations  
  generator = decodeGenerator(params)
  (gen_inp_list, predLogProb, predIdx, predCand, wOut_emb, updatesLstm) = generator.build_prediction_model(
                                            generator.model_th, params, params['beam_size'])
  wOut_emb = wOut_emb.reshape([wOut_emb.shape[0],wOut_emb.shape[2]])
  f_gen_only = theano.function(gen_inp_list, [predLogProb, predIdx, wOut_emb], name='f_pred', updates=updatesLstm)
  
  modelGen = generator.model_th
  upListGen = generator.update_list
 
  if params['share_Wemb']:
     evaluator = decodeEvaluator(params, modelGen['Wemb'])
  else:
     evaluator = decodeEvaluator(params)
  modelEval = evaluator.model_th
  # Define the computational graph for relating the input image features and word indices to the
  # log probability cost funtion. 
  
  (use_dropout_eval, eval_inp_list,
     f_pred_fns, costs, predTh, modelEval) = evaluator.build_advers_eval(modelEval, params, gen_inp_list, wOut_emb)
  
  # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
  # This is a bit of a hack, not happy about it
  comb_inp_list = eval_inp_list
  for inp in gen_inp_list:
    if inp not in comb_inp_list:
        comb_inp_list.append(inp)
  # Compile an evaluation function.. Doesn't include gradients
  # To be used for validation set evaluation
  f_eval= theano.function(comb_inp_list, costs, name='f_eval', updates=updatesLstm)

  # Now let's build a gradient computation graph and rmsprop update mechanism
  if params['share_Wemb']:
    modelEval.pop('Wemb')
  if params['fix_Wemb']:
    upListGen.remove('Wemb')
  
  modelGenUpD =  OrderedDict()
  for k in upListGen:
   modelGenUpD[k] = modelGen[k]
  gradsEval = tensor.grad(costs[0], wrt=modelEval.values(),add_names=True)
  gradsGen = tensor.grad(costs[1], wrt=modelGenUpD.values(), add_names=True)
 
  lrEval = tensor.scalar(name='lrEval',dtype=config.floatX)
  f_grad_comp_eval, f_param_update_eval, zg_eval, rg_eval, ud_eval= solver.build_solver_model(lrEval, modelEval, gradsEval,
                                      comb_inp_list, costs[0], params)
  
  lrGen = tensor.scalar(name='lrGen',dtype=config.floatX)
  f_grad_comp_gen, f_param_update_gen, zg_gen, rg_gen, ud_gen = solver.build_solver_model(lrGen, modelGenUpD, gradsGen,
                                      comb_inp_list, costs[1], params)

  print 'model init done.'
  print 'model has keys: ' + ', '.join(modelGen.keys())

  # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
  # Hence in case of coco/flickr this will 5* no of images
  num_sentences_total = dp.getSplitSize('train', ofwhat = 'images')
  num_iters_one_epoch = num_sentences_total / batch_size
  max_iters = max_epochs * num_iters_one_epoch
  iters_eval= num_iters_one_epoch//2
  iters_gen = num_iters_one_epoch//4

  eval_period_in_epochs = params['eval_period']
  eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
  top_val_ppl2 = -1
  smooth_train_ppl2 = 0.5 # initially size of dictionary of confusion
  val_ppl2 = len(misc['ixtoword'])
  last_status_write_time = 0 # for writing worker job status reports
  json_worker_status = {}
  json_worker_status['params'] = params
  json_worker_status['history'] = []

  len_hist = defaultdict(int)
  t_print_sec = 60
  ## Initialize the model parameters from the checkpoint file if we are resuming training
  if params['checkpoint_file_name'] != 'None':
    zipp(model_init_from,modelGen)
    #zipp(rg_init,rgGen)
    print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
      checkpoint_init['perplexity']))
  
  pos_samp = np.arange(batch_size,dtype=np.int32)
  print batch_size

  ##############################################################
  # Define signal handler to catch ctl-c or kills so that we can save the model trained till that point
  def signal_handler(signal, frame):
    print('You pressed Ctrl+C! Saving Checkpoint Now before exiting!')
    filename = 'advmodel_checkpoint_%s_%s_%s_%.2f_INT.p' % (params['dataset'], host, params['fappend'], val_ppl2)
    dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
    sys.exit(0)
  signal.signal(signal.SIGINT, signal_handler)
  ##############################################################

  for it in xrange(max_epochs):
    epoch = it * 1.0 / num_iters_one_epoch
    # Enable using dropout in training 
    use_dropout_eval.set_value(1.)
    for it2 in xrange(iters_eval): 
        t0 = time.time()
        # fetch a batch of data
        batch,_ = dp.sampPosNegSentSamps(params['eval_batch_size'] - params['rand_negs'])
        real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], maxlen=params['maxlen'], pos_samp=pos_samp, prep_for=params['eval_model'], rand_negs = params['rand_negs'])
        
        # evaluate cost, gradient and perform parameter update
        cost = f_grad_comp_eval(*real_inp_list)
        f_param_update_eval(params['learning_rate_eval'])
        dt = time.time() - t0
        # Track training statistics
        train_ppl2 = (np.e**(-cost)) #step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
        if it2 == 0: smooth_train_ppl2 = train_ppl2 
        if it2 == 0: smooth_train_cost = cost
        else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * cost 
        
        tnow = time.time()
        if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
          print 'Eval Cnn in epoch %d: %d/%d sample done in %.3fs. Cost now is %.3f Pplx is %.3f' % (it, it2, iters_eval, dt, \
	    	smooth_train_cost,smooth_train_ppl2)
          last_status_write_time = tnow
    
    print 'Done training the descriminative model for now. Switching to Genereative model'
    print 'Eval N/W in epoch %d: Cost now is %.3f Pplx is %.3f' % (it, smooth_train_cost,smooth_train_ppl2)

    
    filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_EVOnly.p' % (params['dataset'], host, params['fappend'],it, smooth_train_ppl2)
    dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
    
    
    # Disable Cnn dropout while training gen network
    use_dropout_eval.set_value(0.)
    for it2 in xrange(iters_gen): 
        t0 = time.time()
        # fetch a batch of data
        batch,_ = dp.sampPosNegSentSamps(params['eval_batch_size'] - params['rand_negs'])
        real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], maxlen=params['maxlen'], pos_samp=pos_samp, prep_for=params['eval_model'], rand_negs = params['rand_negs'])
        #import pdb; pdb.set_trace()

        # evaluate cost, gradient and perform parameter update
        #if any([np.isnan(modelGen[m].get_value()).any() for m in modelGen]):
        #    print 'Somebodys NAN!!!'
        #    break;
        #asd = f_gen_only(real_inp_list[2],real_inp_list[3])
        
        #print it2,asd[-1].shape, real_inp_list[0].shape

        #if asd[-1].shape[0] > real_inp_list[0].shape[0]:
        #   import pdb; pdb.set_trace()


        cost = f_grad_comp_gen(*real_inp_list)

        #print it2,cost
        
        #if any([np.isnan(zg_gen[i].get_value()).any() for i in xrange(len(zg_gen))]):
        #    print 'Somebody zg is NAN!!!'
        #    break;
        #if any([np.isnan(rg_gen[i].get_value()).any() for i in xrange(len(rg_gen))]) or any([(rg_gen[i].get_value()<0).any() for i in xrange(len(rg_gen))]):
        #    print 'Somebody rg is NAN!!!'
        #    break;
        
        f_param_update_gen(params['learning_rate_gen'])
        dt = time.time() - t0
        # print training statistics
        train_ppl2 = (np.e**(-cost)) #step_struct['stats']['ppl2']
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
        if it2 == 0: smooth_train_ppl2 = train_ppl2 
        if it2 == 0: smooth_train_cost = cost
        else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * cost 
        
        tnow = time.time()
        if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
          print 'Gen Lstm in epoch %d: %d/%d sample done in %.3fs. Cost now is %.3f Pplx is %.3f' % (it, it2, iters_gen, dt, \
	    	smooth_train_cost,smooth_train_ppl2)
          last_status_write_time = tnow
    
    print 'Done training the generative model for now. Switching to Genereative model. Final Stats are:'
    print 'Gen Lstm in epoch %d: Cost now is %.3f Pplx is %.3f' % (it, smooth_train_cost,smooth_train_ppl2)
    
    ## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
    is_last_iter = (it+1) == max_iters
    is_last_iter = 1
    if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
      # Disable using dropout in validation 
     # use_dropout.set_value(0.)

     # val_ppl2 = eval_split_theano('val', dp, model, params, misc,f_eval) # perform the evaluation on VAL set
     # 
     # if it - params['lr_decay_st_epoch'] >= 0:
     #   params['learning_rate'] = params['learning_rate'] * params['lr_decay']
     #   params['lr_decay_st_epoch'] += 1
     # 
     # print 'validation perplexity = %f, lr = %f' % (val_ppl2, params['learning_rate'])
     # if params['sample_by_len'] == 1:
     #   print len_hist
        
      val_ppl2 = smooth_train_ppl2
      write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
      if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
        if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
          # if we beat a previous record or if this is the first time
          # AND we also beat the user-defined threshold or it doesnt exist
          #top_val_ppl2 = val_ppl2
          filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_GenDone.p' % (params['dataset'], host, params['fappend'],it, smooth_train_ppl2)
          dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
示例#12
0
def main(params):
    batch_size = params['batch_size']
    word_count_threshold = params['word_count_threshold']
    max_epochs = params['max_epochs']
    host = socket.gethostname()  # get computer hostname

    #--------------------------------- Init data provider and load data+features #---------------------------------#
    # fetch the data provider
    dp = getDataProvider(params)

    params['aux_inp_size'] = params['featenc_hidden_size'] * params[
        'n_encgt_sent'] if params['encode_gt_sentences'] else dp.aux_inp_size
    params['featenc_hidden_size'] = params['featenc_hidden_size'] if params[
        'encode_gt_sentences'] else params['aux_inp_size']

    params['image_feat_size'] = dp.img_feat_size
    print 'Image feature size is %d, and aux input size is %d' % (
        params['image_feat_size'], params['aux_inp_size'])

    #--------------------------------- Preprocess sentences and build Vocabulary #---------------------------------#
    misc = {
    }  # stores various misc items that need to be passed around the framework
    # go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
    # at least word_count_threshold number of times
    if params['checkpoint_file_name'] == 'None':
        if params['class_out_factoring'] == 0:
            misc['wordtoix'], misc[
                'ixtoword'], bias_init_vector = preProBuildWordVocab(
                    dp.iterSentences('train'), word_count_threshold)
        else:
            [misc['wordtoix'], misc['classes']
             ], [misc['ixtoword'], misc['clstotree'], misc['ixtoclsinfo']
                 ], [bias_init_vector, bias_init_inter_class
                     ] = preProBuildWordVocab(dp.iterSentences('train'),
                                              word_count_threshold, params)
            params['nClasses'] = bias_init_inter_class.shape[0]
            params['ixtoclsinfo'] = misc['ixtoclsinfo']
    else:
        misc = checkpoint_init['misc']
        params['nClasses'] = checkpoint_init['params']['nClasses']
        if 'ixtoclsinfo' in misc:
            params['ixtoclsinfo'] = misc['ixtoclsinfo']

    params['vocabulary_size'] = len(misc['wordtoix'])
    params['output_size'] = len(misc['ixtoword'])  # these should match though
    print len(misc['wordtoix']), len(misc['ixtoword'])

    #------------------------------ Initialize the solver/generator and build forward path #-----------------------#
    # Initialize the optimizer
    solver = Solver(params['solver'])
    # This initializes the model parameters and does matrix initializations
    lstmGenerator = decodeGenerator(params)
    model, misc['update'], misc['regularize'] = (lstmGenerator.model_th,
                                                 lstmGenerator.update_list,
                                                 lstmGenerator.regularize)

    # force overwrite here. The bias to the softmax is initialized to reflect word frequencies
    # This is a bit of a hack
    if params['checkpoint_file_name'] == 'None':
        model['bd'].set_value(bias_init_vector.astype(config.floatX))
        if params['class_out_factoring'] == 1:
            model['bdCls'].set_value(
                bias_init_inter_class.astype(config.floatX))

    #----------------- If we are using feature encoders -----------------------
    # This mode can now also be used for encoding GT sentences.
    if params['use_encoder_for'] & 1:
        if params['encode_gt_sentences']:
            xI = tensor.zeros((batch_size, params['image_encoding_size']))
            imgFeatEnc_inp = []
        else:
            imgFeatEncoder = RecurrentFeatEncoder(params['image_feat_size'],
                                                  params['word_encoding_size'],
                                                  params,
                                                  mdl_prefix='img_enc_',
                                                  features=dp.features.T)
            mdlLen = len(model.keys())
            model.update(imgFeatEncoder.model_th)
            assert (len(model.keys()) == (mdlLen +
                                          len(imgFeatEncoder.model_th.keys())))
            misc['update'].extend(imgFeatEncoder.update_list)
            misc['regularize'].extend(imgFeatEncoder.regularize)
            (imgenc_use_dropout, imgFeatEnc_inp, xI,
             updatesLSTMImgFeat) = imgFeatEncoder.build_model(model, params)
    else:
        xI = None
        imgFeatEnc_inp = []

    if params['use_encoder_for'] & 2:
        aux_enc_inp = model['Wemb'] if params[
            'encode_gt_sentences'] else dp.aux_inputs.T
        hid_size = params['featenc_hidden_size']
        auxFeatEncoder = RecurrentFeatEncoder(hid_size,
                                              params['image_encoding_size'],
                                              params,
                                              mdl_prefix='aux_enc_',
                                              features=aux_enc_inp)
        mdlLen = len(model.keys())
        model.update(auxFeatEncoder.model_th)
        assert (len(model.keys()) == (mdlLen +
                                      len(auxFeatEncoder.model_th.keys())))
        misc['update'].extend(auxFeatEncoder.update_list)
        misc['regularize'].extend(auxFeatEncoder.regularize)
        (auxenc_use_dropout, auxFeatEnc_inp, xAux,
         updatesLSTMAuxFeat) = auxFeatEncoder.build_model(model, params)

        if params['encode_gt_sentences']:
            # Reshape it size(batch_size, n_gt, hidden_size)
            xAux = xAux.reshape(
                (-1, params['n_encgt_sent'], params['featenc_hidden_size']))
            # Convert it to size (batch_size, n_gt*hidden_size
            xAux = xAux.flatten(2)

    else:
        auxFeatEnc_inp = []
        xAux = None

    #--------------------------------- Initialize the Attention Network #-------------------------------#
    if params['use_attn'] != None:
        attnModel = AttentionNetwork(params['image_feat_size'],
                                     params['hidden_size'],
                                     params,
                                     mdl_prefix='attn_mlp_')
        mdlLen = len(model.keys())
        model.update(attnModel.model_th)
        assert (len(model.keys()) == (mdlLen + len(attnModel.model_th.keys())))
        misc['update'].extend(attnModel.update_list)
        misc['regularize'].extend(attnModel.regularize)
        attn_nw_func = attnModel.build_model
    else:
        attn_nw_func = None

    #--------------------------------- Build the language model graph #---------------------------------#
    # Define the computational graph for relating the input image features and word indices to the
    # log probability cost funtion.
    (use_dropout, inp_list_gen, f_pred_prob, cost, predTh,
     updatesLSTM) = lstmGenerator.build_model(model,
                                              params,
                                              xI,
                                              xAux,
                                              attn_nw=attn_nw_func)

    inp_list = imgFeatEnc_inp + auxFeatEnc_inp + inp_list_gen
    #--------------------------------- Cost function and gradient computations setup #---------------------------------#
    costGrad = cost[0]
    # Add class uncertainity to final cost
    #if params['class_out_factoring'] == 1:
    #  costGrad += cost[2]
    # Add the regularization cost. Since this is specific to trainig and doesn't get included when we
    # evaluate the cost on test or validation data, we leave it here outside the model definition
    if params['regc'] > 0.:
        reg_cost = theano.shared(numpy_floatX(0.), name='reg_c')
        reg_c = tensor.as_tensor_variable(numpy_floatX(params['regc']),
                                          name='reg_c')
        reg_cost = 0.
        for p in misc['regularize']:
            reg_cost += (model[p]**2).sum()
            reg_cost *= 0.5 * reg_c
        costGrad += (reg_cost / params['batch_size'])

    # Compile an evaluation function.. Doesn't include gradients
    # To be used for validation set evaluation
    f_eval = theano.function(inp_list, cost, name='f_eval')

    # Now let's build a gradient computation graph and rmsprop update mechanism
    grads = tensor.grad(costGrad, wrt=model.values())
    lr = tensor.scalar(name='lr', dtype=config.floatX)
    f_grad_shared, f_update, zg, rg, ud = solver.build_solver_model(
        lr, model, grads, inp_list, cost, params)

    print 'model init done.'
    print 'model has keys: ' + ', '.join(model.keys())
    #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
    #print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
    #print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )

    #-------------------------------- Intialize the prediction path if needed by evaluator ----------------------------#
    evalKwargs = {
        'eval_metric': params['eval_metric'],
        'f_gen': lstmGenerator.predict,
        'beamsize': params['eval_beamsize']
    }
    if params['eval_metric'] != 'perplex':
        lstmGenerator.prepPredictor(None, params, params['eval_beamsize'])
        refToks, scr_info = eval_prep_refs('val', dp, params['eval_metric'])
        evalKwargs['refToks'] = refToks
        evalKwargs['scr_info'] = scr_info
        valMetOp = operator.gt
    else:
        valMetOp = operator.lt

    if params['met_to_track'] != []:
        trackMetargs = {
            'eval_metric': params['met_to_track'],
            'f_gen': lstmGenerator.predict,
            'beamsize': params['eval_beamsize']
        }
        lstmGenerator.prepPredictor(None, params, params['eval_beamsize'])
        refToks, scr_info = eval_prep_refs('val', dp, params['met_to_track'])
        trackMetargs['refToks'] = refToks
        trackMetargs['scr_info'] = scr_info

    #--------------------------------- Iterations and Logging intializations ------------------------------------------#
    # calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
    # Hence in case of coco/flickr this will 5* no of images
    num_sentences_total = dp.getSplitSize('train', ofwhat='sentences')
    num_iters_one_epoch = num_sentences_total / batch_size
    max_iters = max_epochs * num_iters_one_epoch
    eval_period_in_epochs = params['eval_period']
    eval_period_in_iters = max(
        1, int(num_iters_one_epoch * eval_period_in_epochs))
    top_val_sc = -1
    smooth_train_ppl2 = len(
        misc['ixtoword'])  # initially size of dictionary of confusion
    val_sc = len(misc['ixtoword'])
    last_status_write_time = 0  # for writing worker job status reports
    json_worker_status = {}
    #json_worker_status['params'] = params
    json_worker_status['history'] = []
    len_hist = defaultdict(int)

    #Initialize Tracking the perplexity of train and val, with iters.
    train_perplex = []
    val_perplex = []
    trackSc_array = []

    #-------------------------------------- Load previously saved model ------------------------------------------------#
    #- Initialize the model parameters from the checkpoint file if we are resuming training
    if params['checkpoint_file_name'] != 'None':
        zipp(model_init_from, model)
        if params['restore_grads'] == 1:
            zipp(rg_init, rg)
        #Copy trackers from previous checkpoint
        if 'trackers' in checkpoint_init:
            train_perplex = checkpoint_init['trackers']['train_perplex']
            val_perplex = checkpoint_init['trackers']['val_perplex']
            trackSc_array = checkpoint_init['trackers'].get('trackScores', [])
        print(
            """\nContinuing training from previous model\n. Already run for %0.2f epochs with
            validation perplx at %0.3f\n""" %
            (checkpoint_init['epoch'], checkpoint_init['perplexity']))

    #--------------------------------------  MAIN LOOP ----------------------------------------------------------------#
    for it in xrange(max_iters):
        t0 = time.time()
        # Enable using dropout in training
        use_dropout.set_value(float(params['use_dropout']))
        if params['use_encoder_for'] & 1:
            imgenc_use_dropout.set_value(float(params['use_dropout']))
        if params['use_encoder_for'] & 2:
            auxenc_use_dropout.set_value(float(params['use_dropout']))

        epoch = it * 1.0 / num_iters_one_epoch
        #-------------------------------------- Prepare batch-------------------------------------------#
        # fetch a batch of data
        if params['sample_by_len'] == 0:
            batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
        else:
            batch, l = dp.getRandBatchByLen(batch_size)
            len_hist[l] += 1

        enc_inp_list = prepare_seq_features(
            batch,
            use_enc_for=params['use_encoder_for'],
            maxlen=params['maxlen'],
            use_shared_mem=params['use_shared_mem_enc'],
            enc_gt_sent=params['encode_gt_sentences'],
            n_enc_sent=params['n_encgt_sent'],
            wordtoix=misc['wordtoix'])

        if params['use_pos_tag'] != 'None':
            gen_inp_list, lenS = prepare_data(
                batch,
                misc['wordtoix'],
                params['maxlen'],
                sentTagMap,
                misc['ixtoword'],
                rev_sents=params['reverse_sentence'],
                use_enc_for=params['use_encoder_for'],
                use_unk_token=params['use_unk_token'])
        else:
            gen_inp_list, lenS = prepare_data(
                batch,
                misc['wordtoix'],
                params['maxlen'],
                rev_sents=params['reverse_sentence'],
                use_enc_for=params['use_encoder_for'],
                use_unk_token=params['use_unk_token'])

        if params['sched_sampling_mode'] != None:
            gen_inp_list.append(epoch)

        real_inp_list = enc_inp_list + gen_inp_list

        #import ipdb; ipdb.set_trace()
        #---------------------------------- Compute cost and apply gradients ---------------------------#
        # evaluate cost, gradient and perform parameter update
        cost = f_grad_shared(*real_inp_list)
        f_update(params['learning_rate'])
        dt = time.time() - t0

        # print training statistics
        train_ppl2 = (2**(cost[1] / lenS))  #step_struct['stats']['ppl2']
        # smooth exponentially decaying moving average
        smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2
        if it == 0:
            smooth_train_ppl2 = train_ppl2  # start out where we start out

        total_cost = cost[0]
        if it == 0: smooth_cost = total_cost  # start out where we start out
        smooth_cost = 0.99 * smooth_cost + 0.01 * total_cost

        #print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
        #      % (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
        #         train_ppl2, smooth_train_ppl2)

        #---------------------------------- Write a report into a json file ---------------------------#
        tnow = time.time()
        if tnow > last_status_write_time + 60 * 1:  # every now and then lets write a report
            print '%d/%d batch done in %.3fs. at epoch %.2f. Cost now is %.3f and pplx is %.3f' \
                    % (it, max_iters, dt, epoch, smooth_cost, smooth_train_ppl2)
            last_status_write_time = tnow
            jstatus = {}
            jstatus['time'] = datetime.datetime.now().isoformat()
            jstatus['iter'] = (it, max_iters)
            jstatus['epoch'] = (epoch, max_epochs)
            jstatus['time_per_batch'] = dt
            jstatus['smooth_train_ppl2'] = smooth_train_ppl2
            jstatus['val_sc'] = val_sc  # just write the last available one
            jstatus['val_metric'] = params[
                'eval_metric']  # just write the last available one
            jstatus['train_ppl2'] = train_ppl2
            #if params['class_out_factoring'] == 1:
            #  jstatus['class_cost'] = float(cost[2])
            json_worker_status['history'].append(jstatus)
            status_file = os.path.join(
                params['worker_status_output_directory'],
                host + '_status.json')
            #import pdb; pdb.set_trace()
            try:
                json.dump(json_worker_status, open(status_file, 'w'))
            except Exception, e:  # todo be more clever here
                print 'tried to write worker status into %s but got error:' % (
                    status_file, )
                print e

        #--------------------------------- VALIDATION ---------------------------#
        #- perform perplexity evaluation on the validation set and save a model checkpoint if it's good
        is_last_iter = (it + 1) == max_iters
        if (((it + 1) % eval_period_in_iters) == 0
                and it < max_iters - 5) or is_last_iter:
            # Disable using dropout in validation
            use_dropout.set_value(0.)
            if params['use_encoder_for'] & 1:
                imgenc_use_dropout.set_value(0.)
            if params['use_encoder_for'] & 2:
                auxenc_use_dropout.set_value(0.)

            # perform the evaluation on VAL set
            val_sc = eval_split_theano('val', dp, model, params, misc, f_eval,
                                       **evalKwargs)
            val_sc = val_sc[0]
            val_perplex.append((it, val_sc))
            train_perplex.append((it, smooth_train_ppl2))

            if params['met_to_track'] != []:
                track_sc = eval_split_theano('val', dp, model, params, misc,
                                             f_eval, **trackMetargs)
                trackSc_array.append((it, {
                    evm: track_sc[i]
                    for i, evm in enumerate(params['met_to_track'])
                }))

            if epoch - params['lr_decay_st_epoch'] >= 0:
                params['learning_rate'] = params['learning_rate'] * params[
                    'lr_decay']
                params['lr_decay_st_epoch'] += 1

            print 'validation %s = %f, lr = %f' % (
                params['eval_metric'], val_sc, params['learning_rate'])
            #if params['sample_by_len'] == 1:
            #  print len_hist

            #----------------------------- SAVE THE MODEL -------------------#
            write_checkpoint_ppl_threshold = params[
                'write_checkpoint_ppl_threshold']
            if valMetOp(val_sc, top_val_sc) or top_val_sc < 0:
                if valMetOp(val_sc, write_checkpoint_ppl_threshold
                            ) or write_checkpoint_ppl_threshold < 0:
                    # if we beat a previous record or if this is the first time
                    # AND we also beat the user-defined threshold or it doesnt exist
                    top_val_sc = val_sc
                    filename = 'model_checkpoint_%s_%s_%s_%s%.2f.p' % (
                        params['dataset'], host, params['fappend'],
                        params['eval_metric'][:3], val_sc)
                    filepath = os.path.join(
                        params['checkpoint_output_directory'], filename)
                    model_npy = unzip(model)
                    rgrads_npy = unzip(rg)
                    checkpoint = {}
                    checkpoint['it'] = it
                    checkpoint['epoch'] = epoch
                    checkpoint['model'] = model_npy
                    checkpoint['rgrads'] = rgrads_npy
                    checkpoint['params'] = params
                    checkpoint['perplexity'] = val_sc
                    checkpoint['misc'] = misc
                    checkpoint['trackers'] = {
                        'train_perplex': train_perplex,
                        'val_perplex': val_perplex,
                        'trackScores': trackSc_array
                    }
                    try:
                        pickle.dump(checkpoint, open(filepath, "wb"))
                        print 'saved checkpoint in %s' % (filepath, )
                    except Exception, e:  # todo be more clever here
                        print 'tried to write checkpoint into %s but got error: ' % (
                            filepath, )
                        print e