pathdir = "keras_models/" + run_uuid model_dir = self.get_directory_path(pathdir, False) ktrain_cls.keras_save_model(model, model_dir) # Write out TensorFlow events as a run artifact print("Uploading TensorFlow events as a run artifact.") mlflow.log_artifacts(output_dir, artifact_path="events") print("loss function use", args.loss) if __name__ == '__main__': # # main used for testing the functions # parser = KParseArgs() args = parser.parse_args() flag = len(sys.argv) == 1 if flag: print("Using Default Baseline parameters") else: print("Using Experimental parameters") print("hidden_layers:", args.hidden_layers) print("output:", args.output) print("epochs:", args.epochs) print("loss:", args.loss) KTrain().train_models(args, flag)
def build_run_args_list(self, run_data): a_list = [] for p in run_data.params: if p.key == 'loss_function': a_list.append('--loss') else: a_list.append('--' + p.key) a_list.append(p.value) return a_list if __name__ == '__main__': # # main used for testing the functions # parser = KParseArgs() args = parser.parse_args() flag = len(sys.argv) == 1 cls = KReproduce() data = cls.get_run_data(args.run_uuid, args.tracking_server) args_list = cls.build_run_args_list(data) print("run_uuid:", args.run_uuid) args = parser.parse_args_list(args_list) print("hidden_layers:", args.hidden_layers) print("output:", args.output) print("epochs:", args.epochs)