def main(): black_and_white = iaa.RandomColorsBinaryImageColorizer( color_true=255, color_false=0) print("alpha=1.0, black and white") image = ia.quokka_square((128, 128)) aug = iaa.Canny(alpha=1.0, colorizer=black_and_white) ia.imshow(ia.draw_grid(aug(images=[image] * (5*5)))) print("alpha=1.0, random color") image = ia.quokka_square((128, 128)) aug = iaa.Canny(alpha=1.0) ia.imshow(ia.draw_grid(aug(images=[image] * (5*5)))) print("alpha=1.0, sobel ksize=[3, 13], black and white") image = ia.quokka_square((128, 128)) aug = iaa.Canny(alpha=1.0, sobel_kernel_size=[3, 7], colorizer=black_and_white) ia.imshow(ia.draw_grid(aug(images=[image] * (5*5)))) print("alpha=1.0, sobel ksize=3, black and white") image = ia.quokka_square((128, 128)) aug = iaa.Canny(alpha=1.0, sobel_kernel_size=3, colorizer=black_and_white) ia.imshow(ia.draw_grid(aug(images=[image] * (5*5)))) print("fully random") image = ia.quokka_square((128, 128)) aug = iaa.Canny() ia.imshow(ia.draw_grid(aug(images=[image] * (5*5))))
def test__draw_samples__single_value_hysteresis(self): seed = 1 nb_images = 1000 aug = iaa.Canny( alpha=0.2, hysteresis_thresholds=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], sobel_kernel_size=[3, 5, 7], random_state=iarandom.RNG(seed)) example_image = np.zeros((5, 5, 3), dtype=np.uint8) samples = aug._draw_samples([example_image] * nb_images, random_state=iarandom.RNG(seed)) alpha_samples = samples[0] hthresh_samples = samples[1] sobel_samples = samples[2] rss = iarandom.RNG(seed).duplicate(4) alpha_expected = iap.Deterministic(0.2).draw_samples((nb_images, ), rss[0]) hthresh_expected = iap.Choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).draw_samples((nb_images, 2), rss[1]) sobel_expected = iap.Choice([3, 5, 7]).draw_samples((nb_images, ), rss[2]) invalid = hthresh_expected[:, 0] > hthresh_expected[:, 1] assert np.any(invalid) hthresh_expected[invalid, :] = hthresh_expected[invalid, :][:, [1, 0]] assert hthresh_expected.shape == (nb_images, 2) assert not np.any(hthresh_expected[:, 0] > hthresh_expected[:, 1]) assert np.allclose(alpha_samples, alpha_expected) assert np.allclose(hthresh_samples, hthresh_expected) assert np.allclose(sobel_samples, sobel_expected)
def rgbmore(self, im): return_im = [] add_return_im = lambda im: return_im.extend(im) grey = np.array(im.convert(mode='L')) im = np.array(im) rgb_grey = np.dstack((im, grey)) edge = iaa.EdgeDetect(alpha=1)(images=rgb_grey) dir_edge = lambda d: iaa.DirectedEdgeDetect(alpha=1, direction=d)(images= grey) dir_edges = np.array( [dir_edge(d) for d in np.linspace(0, 1, num=3, endpoint=False)]) dir_edges = np.transpose(dir_edges, (1, 2, 0)) canny = iaa.Canny(alpha=1.0, hysteresis_thresholds=128, sobel_kernel_size=4, deterministic=True, colorizer=iaa.RandomColorsBinaryImageColorizer( color_true=255, color_false=0))(images=grey) avg_pool = iaa.AveragePooling(2)(images=grey) max_pool = iaa.MaxPooling(2)(images=grey) min_pool = iaa.MinPooling(2)(images=grey) add_return_im([im, grey]) add_return_im([edge, dir_edges, canny]) add_return_im([avg_pool, max_pool, min_pool]) return np.dstack(return_im)
def test_augment_images__alpha_is_one(self): colorizer = iaa.RandomColorsBinaryImageColorizer(color_true=254, color_false=1) aug = iaa.Canny(alpha=1.0, hysteresis_thresholds=100, sobel_kernel_size=3, colorizer=colorizer, random_state=1) image_single_chan = np.uint8([[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0]]) image = np.tile(image_single_chan[:, :, np.newaxis] * 128, (1, 1, 3)) # canny image, looks a bit unintuitive, but is what OpenCV returns # can be checked via something like # print("canny\n", cv2.Canny(image_single_chan*255, threshold1=100, # threshold2=200, # apertureSize=3, # L2gradient=True)) image_canny = np.array([[0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0, 0]], dtype=bool) image_aug_expected = np.copy(image) image_aug_expected[image_canny] = 254 image_aug_expected[~image_canny] = 1 image_aug = aug.augment_image(image) assert np.array_equal(image_aug, image_aug_expected)
def test___str___tuple_as_hysteresis(self): alpha = iap.Deterministic(0.2) hysteresis_thresholds = ( iap.Deterministic(10), iap.Deterministic(11) ) sobel_kernel_size = iap.Deterministic(3) colorizer = iaa.RandomColorsBinaryImageColorizer( color_true=10, color_false=20) aug = iaa.Canny( alpha=alpha, hysteresis_thresholds=hysteresis_thresholds, sobel_kernel_size=sobel_kernel_size, colorizer=colorizer ) observed = aug.__str__() expected = ("Canny(alpha=%s, hysteresis_thresholds=(%s, %s), " "sobel_kernel_size=%s, colorizer=%s, name=UnnamedCanny, " "deterministic=False)") % ( str(aug.alpha), str(aug.hysteresis_thresholds[0]), str(aug.hysteresis_thresholds[1]), str(aug.sobel_kernel_size), colorizer) assert observed == expected
def test___init___custom_settings(self): aug = iaa.Canny( alpha=0.2, hysteresis_thresholds=([0, 1, 2], iap.DiscreteUniform(1, 10)), sobel_kernel_size=[3, 5], colorizer=iaa.RandomColorsBinaryImageColorizer( color_true=10, color_false=20) ) assert is_parameter_instance(aug.alpha, iap.Deterministic) assert isinstance(aug.hysteresis_thresholds, tuple) assert is_parameter_instance(aug.sobel_kernel_size, iap.Choice) assert isinstance(aug.colorizer, iaa.RandomColorsBinaryImageColorizer) assert np.isclose(aug.alpha.value, 0.2) assert len(aug.hysteresis_thresholds) == 2 assert is_parameter_instance(aug.hysteresis_thresholds[0], iap.Choice) assert aug.hysteresis_thresholds[0].a == [0, 1, 2] assert is_parameter_instance(aug.hysteresis_thresholds[1], iap.DiscreteUniform) assert np.isclose(aug.hysteresis_thresholds[1].a.value, 1) assert np.isclose(aug.hysteresis_thresholds[1].b.value, 10) assert is_parameter_instance(aug.sobel_kernel_size, iap.Choice) assert aug.sobel_kernel_size.a == [3, 5] assert is_parameter_instance(aug.colorizer.color_true, iap.Deterministic) assert is_parameter_instance(aug.colorizer.color_false, iap.Deterministic) assert aug.colorizer.color_true.value == 10 assert aug.colorizer.color_false.value == 20
def test___init___default_settings(self): aug = iaa.Canny() assert is_parameter_instance(aug.alpha, iap.Uniform) assert isinstance(aug.hysteresis_thresholds, tuple) assert is_parameter_instance(aug.sobel_kernel_size, iap.DiscreteUniform) assert isinstance(aug.colorizer, iaa.RandomColorsBinaryImageColorizer) assert np.isclose(aug.alpha.a.value, 0.0) assert np.isclose(aug.alpha.b.value, 1.0) assert len(aug.hysteresis_thresholds) == 2 assert is_parameter_instance(aug.hysteresis_thresholds[0], iap.DiscreteUniform) assert np.isclose(aug.hysteresis_thresholds[0].a.value, 100-40) assert np.isclose(aug.hysteresis_thresholds[0].b.value, 100+40) assert is_parameter_instance(aug.hysteresis_thresholds[1], iap.DiscreteUniform) assert np.isclose(aug.hysteresis_thresholds[1].a.value, 200-40) assert np.isclose(aug.hysteresis_thresholds[1].b.value, 200+40) assert aug.sobel_kernel_size.a.value == 3 assert aug.sobel_kernel_size.b.value == 7 assert is_parameter_instance(aug.colorizer.color_true, iap.DiscreteUniform) assert is_parameter_instance(aug.colorizer.color_false, iap.DiscreteUniform) assert aug.colorizer.color_true.a.value == 0 assert aug.colorizer.color_true.b.value == 255 assert aug.colorizer.color_false.a.value == 0 assert aug.colorizer.color_false.b.value == 255
def test__draw_samples__single_value_hysteresis(self): seed = 1 nb_images = 1000 aug = iaa.Canny( alpha=0.2, hysteresis_thresholds=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], sobel_kernel_size=[3, 5, 7], random_state=np.random.RandomState(seed)) example_image = np.zeros((5, 5, 3), dtype=np.uint8) samples = aug._draw_samples([example_image] * nb_images, random_state=np.random.RandomState(seed)) alpha_samples = samples[0] hthresh_samples = samples[1] sobel_samples = samples[2] rss = ia.derive_random_states(np.random.RandomState(seed), 4) alpha_expected = [0.2] * nb_images hthresh_expected = rss[1].choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size=(nb_images, 2)) sobel_expected = rss[3].choice([3, 5, 7], size=(nb_images, )) invalid = hthresh_expected[:, 0] > hthresh_expected[:, 1] assert np.any(invalid) hthresh_expected[invalid, :] = hthresh_expected[invalid, :][:, [1, 0]] assert hthresh_expected.shape == (nb_images, 2) assert not np.any(hthresh_expected[:, 0] > hthresh_expected[:, 1]) assert np.allclose(alpha_samples, alpha_expected) assert np.allclose(hthresh_samples, hthresh_expected) assert np.allclose(sobel_samples, sobel_expected)
def test_augment_images__random_values(self): colorizer = iaa.RandomColorsBinaryImageColorizer( color_true=255, color_false=0 ) image_single_chan = iarandom.RNG(1).integers( 0, 255, size=(100, 100), dtype="uint8") image = np.tile(image_single_chan[:, :, np.newaxis], (1, 1, 3)) images_canny_uint8 = {} for thresh1, thresh2, ksize in itertools.product([100], [200], [3, 5]): if thresh1 > thresh2: continue image_canny = cv2.Canny( image, threshold1=thresh1, threshold2=thresh2, apertureSize=ksize, L2gradient=True) image_canny_uint8 = np.tile( image_canny[:, :, np.newaxis], (1, 1, 3)) similar = 0 for key, image_expected in images_canny_uint8.items(): if np.array_equal(image_canny_uint8, image_expected): similar += 1 assert similar == 0 images_canny_uint8[(thresh1, thresh2, ksize)] = image_canny_uint8 seen = {key: False for key in images_canny_uint8.keys()} for i in range(500): aug = iaa.Canny( alpha=1.0, hysteresis_thresholds=(iap.Deterministic(100), iap.Deterministic(200)), sobel_kernel_size=[3, 5], colorizer=colorizer, seed=i) image_aug = aug.augment_image(image) match_index = None for key, image_expected in images_canny_uint8.items(): if np.array_equal(image_aug, image_expected): match_index = key break assert match_index is not None seen[match_index] = True assert len(seen.keys()) == len(images_canny_uint8.keys()) if all(seen.values()): break assert np.all(seen.values())
def __call__(self, sample): image, polygon, labels = sample["image"], sample["polygon"], sample[ "labels"] image = np.array(image) t = iaa.Canny(alpha=self.alpha) img = t(image=image) image = Image.fromarray(img) sample = {'image': image, 'polygon': polygon, 'labels': labels} return sample
def test_augment_images__alpha_is_zero(self): aug = iaa.Canny(alpha=0.0, hysteresis_thresholds=(0, 10), sobel_kernel_size=[3, 5, 7], random_state=1) image = np.arange(5 * 5 * 3).astype(np.uint8).reshape((5, 5, 3)) image_aug = aug.augment_image(image) assert np.array_equal(image_aug, image)
def test_augment_images__random_color(self): class _Color(iap.StochasticParameter): def __init__(self, values): super(_Color, self).__init__() self.values = values def _draw_samples(self, size, random_state): v = random_state.choice(self.values) return np.full(size, v, dtype=np.uint8) colorizer = iaa.RandomColorsBinaryImageColorizer( color_true=_Color([253, 254]), color_false=_Color([1, 2])) image_single_chan = np.uint8([[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0]]) image = np.tile(image_single_chan[:, :, np.newaxis] * 128, (1, 1, 3)) # canny image, looks a bit unintuitive, but is what OpenCV returns # can be checked via something like # print("canny\n", cv2.Canny(image_single_chan*255, threshold1=100, # threshold2=200, # apertureSize=3, # L2gradient=True)) image_canny = np.array([[0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0, 0]], dtype=bool) seen = { (253, 1): False, (253, 2): False, (254, 1): False, (254, 2): False } for i in range(100): aug = iaa.Canny(alpha=1.0, hysteresis_thresholds=100, sobel_kernel_size=3, colorizer=colorizer, random_state=i) image_aug = aug.augment_image(image) color_true = np.unique(image_aug[image_canny]) color_false = np.unique(image_aug[~image_canny]) assert len(color_true) == 1 assert len(color_false) == 1 color_true = int(color_true[0]) color_false = int(color_false[0]) seen[(int(color_true), int(color_false))] = True assert len(seen.keys()) == 4 if all(seen.values()): break assert np.all(seen.values())
def test_zero_sized_axes(self): shapes = [(0, 0, 3), (0, 1, 3), (1, 0, 3)] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Canny(alpha=1) image_aug = aug(image=image) assert image_aug.shape == image.shape
def chapter_augmenters_canny(): fn_start = "edges/canny" aug = iaa.Canny() run_and_save_augseq(fn_start + ".jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(4 * 2)], cols=4, rows=2) aug = iaa.Canny(alpha=(0.0, 0.5)) run_and_save_augseq(fn_start + "_alpha.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(4 * 2)], cols=4, rows=2) aug = iaa.Canny(alpha=(0.0, 0.5), colorizer=iaa.RandomColorsBinaryImageColorizer( color_true=255, color_false=0)) run_and_save_augseq(fn_start + "_alpha_white_on_black.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(4 * 2)], cols=4, rows=2) aug = iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7]) run_and_save_augseq(fn_start + "_sobel_kernel_size.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(4 * 2)], cols=4, rows=2) aug = iaa.Alpha((0.0, 1.0), iaa.Canny(alpha=1), iaa.MedianBlur(13)) run_and_save_augseq(fn_start + "_alpha_median_blur.jpg", aug, [ia.quokka(size=(128, 128)) for _ in range(4 * 2)], cols=4, rows=2)
def test__draw_samples__tuple_as_hysteresis(self): seed = 1 nb_images = 10 aug = iaa.Canny( alpha=0.2, hysteresis_thresholds=([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], iap.DiscreteUniform(5, 100)), sobel_kernel_size=[3, 5, 7], random_state=iarandom.RNG(seed)) aug.alpha = remove_prefetching(aug.alpha) aug.hysteresis_thresholds = ( remove_prefetching(aug.hysteresis_thresholds[0]), remove_prefetching(aug.hysteresis_thresholds[1]) ) aug.sobel_kernel_size = remove_prefetching(aug.sobel_kernel_size) example_image = np.zeros((5, 5, 3), dtype=np.uint8) samples = aug._draw_samples([example_image] * nb_images, random_state=iarandom.RNG(seed)) alpha_samples = samples[0] hthresh_samples = samples[1] sobel_samples = samples[2] rss = iarandom.RNG(seed).duplicate(4) alpha_expected = iap.Deterministic(0.2).draw_samples((nb_images,), rss[0]) hthresh_expected = [None, None] hthresh_expected[0] = iap.Choice( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).draw_samples((nb_images,), rss[1]) # TODO simplify this to rss[2].randint(5, 100+1) # would currenlty be a bit more ugly, because DiscrUniform # samples two values for a and b first from rss[2] hthresh_expected[1] = iap.DiscreteUniform(5, 100).draw_samples( (nb_images,), rss[2]) hthresh_expected = np.stack(hthresh_expected, axis=-1) sobel_expected = iap.Choice([3, 5, 7]).draw_samples((nb_images,), rss[3]) invalid = hthresh_expected[:, 0] > hthresh_expected[:, 1] hthresh_expected[invalid, :] = hthresh_expected[invalid, :][:, [1, 0]] assert hthresh_expected.shape == (nb_images, 2) assert not np.any(hthresh_expected[:, 0] > hthresh_expected[:, 1]) assert np.allclose(alpha_samples, alpha_expected) assert np.allclose(hthresh_samples, hthresh_expected) assert np.allclose(sobel_samples, sobel_expected)
def test_get_parameters(self): alpha = iap.Deterministic(0.2) hysteresis_thresholds = iap.Deterministic(10) sobel_kernel_size = iap.Deterministic(3) colorizer = iaa.RandomColorsBinaryImageColorizer(color_true=10, color_false=20) aug = iaa.Canny(alpha=alpha, hysteresis_thresholds=hysteresis_thresholds, sobel_kernel_size=sobel_kernel_size, colorizer=colorizer) params = aug.get_parameters() assert params[0] is alpha assert params[1] is hysteresis_thresholds assert params[2] is sobel_kernel_size assert params[3] is colorizer
def test___str___single_value_hysteresis(self): alpha = iap.Deterministic(0.2) hysteresis_thresholds = iap.Deterministic(10) sobel_kernel_size = iap.Deterministic(3) colorizer = iaa.RandomColorsBinaryImageColorizer(color_true=10, color_false=20) aug = iaa.Canny(alpha=alpha, hysteresis_thresholds=hysteresis_thresholds, sobel_kernel_size=sobel_kernel_size, colorizer=colorizer) observed = aug.__str__() expected = ("Canny(alpha=%s, hysteresis_thresholds=%s, " "sobel_kernel_size=%s, colorizer=%s, name=UnnamedCanny, " "deterministic=False)") % (alpha, hysteresis_thresholds, sobel_kernel_size, colorizer) assert observed == expected
def test___init___single_value_hysteresis(self): aug = iaa.Canny(alpha=0.2, hysteresis_thresholds=[0, 1, 2], sobel_kernel_size=[3, 5], colorizer=iaa.RandomColorsBinaryImageColorizer( color_true=10, color_false=20)) assert isinstance(aug.alpha, iap.Deterministic) assert isinstance(aug.hysteresis_thresholds, iap.Choice) assert isinstance(aug.sobel_kernel_size, iap.Choice) assert isinstance(aug.colorizer, iaa.RandomColorsBinaryImageColorizer) assert np.isclose(aug.alpha.value, 0.2) assert aug.hysteresis_thresholds.a == [0, 1, 2] assert isinstance(aug.sobel_kernel_size, iap.Choice) assert aug.sobel_kernel_size.a == [3, 5] assert isinstance(aug.colorizer.color_true, iap.Deterministic) assert isinstance(aug.colorizer.color_false, iap.Deterministic) assert aug.colorizer.color_true.value == 10 assert aug.colorizer.color_false.value == 20
def test__draw_samples__tuple_as_hysteresis(self): seed = 1 nb_images = 10 aug = iaa.Canny( alpha=0.2, hysteresis_thresholds=([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], iap.DiscreteUniform(5, 100)), sobel_kernel_size=[3, 5, 7], random_state=np.random.RandomState(seed)) example_image = np.zeros((5, 5, 3), dtype=np.uint8) samples = aug._draw_samples([example_image] * nb_images, random_state=np.random.RandomState(seed)) alpha_samples = samples[0] hthresh_samples = samples[1] sobel_samples = samples[2] rss = ia.derive_random_states(np.random.RandomState(seed), 4) alpha_expected = [0.2] * nb_images hthresh_expected = ( rss[1].choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size=(nb_images, )), # TODO simplify this to rss[2].randint(5, 100+1) # would currenlty be a bit more ugly, because DiscrUniform # samples two values for a and b first from rss[2] iap.DiscreteUniform(5, 100).draw_samples((nb_images, ), rss[2])) hthresh_expected = np.stack(hthresh_expected, axis=-1) sobel_expected = rss[3].choice([3, 5, 7], size=(nb_images, )) invalid = hthresh_expected[:, 0] > hthresh_expected[:, 1] hthresh_expected[invalid, :] = hthresh_expected[invalid, :][:, [1, 0]] assert hthresh_expected.shape == (nb_images, 2) assert not np.any(hthresh_expected[:, 0] > hthresh_expected[:, 1]) assert np.allclose(alpha_samples, alpha_expected) assert np.allclose(hthresh_samples, hthresh_expected) assert np.allclose(sobel_samples, sobel_expected)
def test_pickleable(self): aug = iaa.Canny(random_state=1) runtest_pickleable_uint8_img(aug, iterations=20)
elif augmentation == 'random_shadow': transform = RandomShadow(always_apply=True) transformed_image = transform(image=image)['image'] elif augmentation == 'random_sun_flare': transform = RandomSunFlare(always_apply=True) transformed_image = transform(image=image)['image'] elif augmentation == 'spatter': transform = iaa.imgcorruptlike.Spatter(severity=2) transformed_image = transform(image=image) ## Edges elif augmentation == 'canny': transform = iaa.Canny(alpha=(0.0, 0.9)) transformed_image = transform(image=image) ## Pooling elif augmentation == 'average_pooling': transform = iaa.AveragePooling(5) transformed_image = transform(image=image) elif augmentation == 'max_pooling': transform = iaa.MaxPooling(5) transformed_image = transform(image=image) elif augmentation == 'min_pooling': transform = iaa.MinPooling(5) transformed_image = transform(image=image)
from PIL import Image img=plt.imread('bird.jpg') seq = iaa.Sequential([ iaa.Fliplr(p=0),# basically this is original one iaa.Crop(px=(22, 45),keep_size=False), # crop images from each side by 0 to 16px (randomly chosen) iaa.Fliplr(1), # horizontally flip 50% of the images iaa.GaussianBlur(sigma=(5, 7.0)), # blur images with a sigma of 0 to 3.0 iaa.ImpulseNoise(p=(0.6,1)), iaa.EdgeDetect(alpha=(0.9,1)), #iaa.AddToBrightness(add=(100,124)), iaa.Canny(alpha=(0.8,0.9)), iaa.Grayscale(alpha=1.00), iaa.ChannelShuffle(p=1), iaa.geometric.Affine( scale=2,rotate=22, backend='cv2'), iaa.Cartoon(blur_ksize=(11,13)), iaa.CenterCropToAspectRatio(1), iaa.CenterCropToFixedSize(100,100), iaa.ChangeColorTemperature(kelvin=(2222,3333)), #iaa.segmentation(), iaa.CLAHE(clip_limit=(4,8)), iaa.Rotate(rotate=(-30,90)) ]) plt.figure(figsize=(12,12)) for idx,Augmentor in enumerate(seq):
def test_pickleable(self): aug = iaa.Canny(seed=1) runtest_pickleable_uint8_img(aug, iterations=20)
import tensorflow as tf from matplotlib import pyplot as plt path= 'Image A*/train/*.xml' import cv2 seq = iaa.Sequential([ iaa.Fliplr(p=0),# basically this is original one iaa.Sometimes(0.05,(iaa.Crop(px=(22, 45),keep_size=True))), # crop images from each side by 0 to 16px (randomly chosen) iaa.Sometimes(0.5,(iaa.Fliplr(1))), # horizontally flip 50% of the images iaa.Sometimes(0.02,iaa.GaussianBlur(sigma=(5, 7.0))), # blur images with a sigma of 0 to 3.0 iaa.Sometimes(0.02 ,iaa.ImpulseNoise(p=(0.6,1))), iaa.Sometimes(0.02 ,iaa.EdgeDetect(alpha=(0.09,1))), #iaa.AddToBrightness(add=(100,124)), iaa.Sometimes(0.02 ,iaa.Canny(alpha=(0.8,0.9))), iaa.Sometimes(0.5 ,iaa.Grayscale(alpha=1.00)), iaa.Sometimes(0.5 ,iaa.ChannelShuffle(p=1)), #iaa.Sometimes(0.02 ,(iaa.geometric.Affine( scale=2,rotate=22,order=1))), iaa.Sometimes(0.5 ,iaa.Cartoon(blur_ksize=(11,13))), iaa.Sometimes(0.02 ,iaa.CenterCropToAspectRatio(1)), iaa.Sometimes(0.02 ,iaa.CenterCropToFixedSize(100,100)), iaa.Sometimes(0.12 ,iaa.ChangeColorTemperature(kelvin=(2222,3333))), #iaa.segmentation(), iaa.Sometimes(0.12 ,iaa.CLAHE(clip_limit=(4,8))), iaa.Sometimes(0.8 ,iaa.Rotate(rotate=(-90,90),order=1)) ]) plt.figure(figsize=(12,12))
aug50 = iaa.UniformColorQuantizationToNBits() aug51 = iaa.GammaContrast((0.5, 2.0), per_channel=True) aug52 = iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True) aug53 = iaa.LogContrast(gain=(0.6, 1.4), per_channel=True) aug54 = iaa.LinearContrast((0.4, 1.6), per_channel=True) # aug55 = iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True) aug56 = iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization()) aug57 = iaa.HistogramEqualization( from_colorspace=iaa.HistogramEqualization.BGR, to_colorspace=iaa.HistogramEqualization.HSV) aug58 = iaa.DirectedEdgeDetect(alpha=(0.0, 0.5), direction=(0.0, 0.5)) aug59 = iaa.Canny( alpha=(0.0, 0.3), colorizer=iaa.RandomColorsBinaryImageColorizer( color_true=255, color_false=0 ) ) def aug_imgaug(aug, image): image2 = image.copy() image2 = np.expand_dims(image2, axis=0) images_aug = aug(images = image2) return images_aug class FaceEmbeddings(): """Class to load model and run inference."""
def create_augmenters(height, width, height_augmentable, width_augmentable, only_augmenters): def lambda_func_images(images, random_state, parents, hooks): return images def lambda_func_heatmaps(heatmaps, random_state, parents, hooks): return heatmaps def lambda_func_keypoints(keypoints, random_state, parents, hooks): return keypoints def assertlambda_func_images(images, random_state, parents, hooks): return True def assertlambda_func_heatmaps(heatmaps, random_state, parents, hooks): return True def assertlambda_func_keypoints(keypoints, random_state, parents, hooks): return True augmenters_meta = [ iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=False, name="Sequential_2xNoop"), iaa.Sequential([iaa.Noop(), iaa.Noop()], random_order=True, name="Sequential_2xNoop_random_order"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=False, name="SomeOf_3xNoop"), iaa.SomeOf((1, 3), [iaa.Noop(), iaa.Noop(), iaa.Noop()], random_order=True, name="SomeOf_3xNoop_random_order"), iaa.OneOf([iaa.Noop(), iaa.Noop(), iaa.Noop()], name="OneOf_3xNoop"), iaa.Sometimes(0.5, iaa.Noop(), name="Sometimes_Noop"), iaa.WithChannels([1, 2], iaa.Noop(), name="WithChannels_1_and_2_Noop"), iaa.Noop(name="Noop"), iaa.Lambda(func_images=lambda_func_images, func_heatmaps=lambda_func_heatmaps, func_keypoints=lambda_func_keypoints, name="Lambda"), iaa.AssertLambda(func_images=assertlambda_func_images, func_heatmaps=assertlambda_func_heatmaps, func_keypoints=assertlambda_func_keypoints, name="AssertLambda"), iaa.AssertShape((None, height_augmentable, width_augmentable, None), name="AssertShape"), iaa.ChannelShuffle(0.5, name="ChannelShuffle") ] augmenters_arithmetic = [ iaa.Add((-10, 10), name="Add"), iaa.AddElementwise((-10, 10), name="AddElementwise"), #iaa.AddElementwise((-500, 500), name="AddElementwise"), iaa.AdditiveGaussianNoise(scale=(5, 10), name="AdditiveGaussianNoise"), iaa.AdditiveLaplaceNoise(scale=(5, 10), name="AdditiveLaplaceNoise"), iaa.AdditivePoissonNoise(lam=(1, 5), name="AdditivePoissonNoise"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.MultiplyElementwise((0.5, 1.5), name="MultiplyElementwise"), iaa.Dropout((0.01, 0.05), name="Dropout"), iaa.CoarseDropout((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseDropout"), iaa.ReplaceElementwise((0.01, 0.05), (0, 255), name="ReplaceElementwise"), #iaa.ReplaceElementwise((0.95, 0.99), (0, 255), name="ReplaceElementwise"), iaa.SaltAndPepper((0.01, 0.05), name="SaltAndPepper"), iaa.ImpulseNoise((0.01, 0.05), name="ImpulseNoise"), iaa.CoarseSaltAndPepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSaltAndPepper"), iaa.Salt((0.01, 0.05), name="Salt"), iaa.CoarseSalt((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarseSalt"), iaa.Pepper((0.01, 0.05), name="Pepper"), iaa.CoarsePepper((0.01, 0.05), size_percent=(0.01, 0.1), name="CoarsePepper"), iaa.Invert(0.1, name="Invert"), # ContrastNormalization iaa.JpegCompression((50, 99), name="JpegCompression") ] augmenters_blend = [ iaa.Alpha((0.01, 0.99), iaa.Noop(), name="Alpha"), iaa.AlphaElementwise((0.01, 0.99), iaa.Noop(), name="AlphaElementwise"), iaa.SimplexNoiseAlpha(iaa.Noop(), name="SimplexNoiseAlpha"), iaa.FrequencyNoiseAlpha((-2.0, 2.0), iaa.Noop(), name="FrequencyNoiseAlpha") ] augmenters_blur = [ iaa.GaussianBlur(sigma=(1.0, 5.0), name="GaussianBlur"), iaa.AverageBlur(k=(3, 11), name="AverageBlur"), iaa.MedianBlur(k=(3, 11), name="MedianBlur"), iaa.BilateralBlur(d=(3, 11), name="BilateralBlur"), iaa.MotionBlur(k=(3, 11), name="MotionBlur") ] augmenters_color = [ # InColorspace (deprecated) iaa.WithColorspace(to_colorspace="HSV", children=iaa.Noop(), name="WithColorspace"), iaa.WithHueAndSaturation(children=iaa.Noop(), name="WithHueAndSaturation"), iaa.MultiplyHueAndSaturation((0.8, 1.2), name="MultiplyHueAndSaturation"), iaa.MultiplyHue((-1.0, 1.0), name="MultiplyHue"), iaa.MultiplySaturation((0.8, 1.2), name="MultiplySaturation"), iaa.AddToHueAndSaturation((-10, 10), name="AddToHueAndSaturation"), iaa.AddToHue((-10, 10), name="AddToHue"), iaa.AddToSaturation((-10, 10), name="AddToSaturation"), iaa.ChangeColorspace(to_colorspace="HSV", name="ChangeColorspace"), iaa.Grayscale((0.01, 0.99), name="Grayscale"), iaa.KMeansColorQuantization((2, 16), name="KMeansColorQuantization"), iaa.UniformColorQuantization((2, 16), name="UniformColorQuantization") ] augmenters_contrast = [ iaa.GammaContrast(gamma=(0.5, 2.0), name="GammaContrast"), iaa.SigmoidContrast(gain=(5, 20), cutoff=(0.25, 0.75), name="SigmoidContrast"), iaa.LogContrast(gain=(0.7, 1.0), name="LogContrast"), iaa.LinearContrast((0.5, 1.5), name="LinearContrast"), iaa.AllChannelsCLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), name="AllChannelsCLAHE"), iaa.CLAHE(clip_limit=(2, 10), tile_grid_size_px=(3, 11), to_colorspace="HSV", name="CLAHE"), iaa.AllChannelsHistogramEqualization( name="AllChannelsHistogramEqualization"), iaa.HistogramEqualization(to_colorspace="HSV", name="HistogramEqualization"), ] augmenters_convolutional = [ iaa.Convolve(np.float32([[0, 0, 0], [0, 1, 0], [0, 0, 0]]), name="Convolve_3x3"), iaa.Sharpen(alpha=(0.01, 0.99), lightness=(0.5, 2), name="Sharpen"), iaa.Emboss(alpha=(0.01, 0.99), strength=(0, 2), name="Emboss"), iaa.EdgeDetect(alpha=(0.01, 0.99), name="EdgeDetect"), iaa.DirectedEdgeDetect(alpha=(0.01, 0.99), name="DirectedEdgeDetect") ] augmenters_edges = [iaa.Canny(alpha=(0.01, 0.99), name="Canny")] augmenters_flip = [ iaa.Fliplr(1.0, name="Fliplr"), iaa.Flipud(1.0, name="Flipud") ] augmenters_geometric = [ iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=0, mode="constant", cval=(0, 255), name="Affine_order_0_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), name="Affine_order_1_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=3, mode="constant", cval=(0, 255), name="Affine_order_3_constant"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="edge", cval=(0, 255), name="Affine_order_1_edge"), iaa.Affine(scale=(0.9, 1.1), translate_percent={ "x": (-0.05, 0.05), "y": (-0.05, 0.05) }, rotate=(-10, 10), shear=(-10, 10), order=1, mode="constant", cval=(0, 255), backend="skimage", name="Affine_order_1_constant_skimage"), # TODO AffineCv2 iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="constant", name="PiecewiseAffine_4x4_order_1_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=0, mode="constant", name="PiecewiseAffine_4x4_order_0_constant"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=4, nb_cols=4, order=1, mode="edge", name="PiecewiseAffine_4x4_order_1_edge"), iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8, order=1, mode="constant", name="PiecewiseAffine_8x8_order_1_constant"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=False, name="PerspectiveTransform"), iaa.PerspectiveTransform(scale=(0.01, 0.05), keep_size=True, name="PerspectiveTransform_keep_size"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=0, mode="constant", cval=0, name="ElasticTransformation_order_0_constant"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="constant", cval=0, name="ElasticTransformation_order_1_constant"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="nearest", cval=0, name="ElasticTransformation_order_1_nearest"), iaa.ElasticTransformation( alpha=(1, 10), sigma=(0.5, 1.5), order=1, mode="reflect", cval=0, name="ElasticTransformation_order_1_reflect"), iaa.Rot90((1, 3), keep_size=False, name="Rot90"), iaa.Rot90((1, 3), keep_size=True, name="Rot90_keep_size") ] augmenters_pooling = [ iaa.AveragePooling(kernel_size=(1, 16), keep_size=False, name="AveragePooling"), iaa.AveragePooling(kernel_size=(1, 16), keep_size=True, name="AveragePooling_keep_size"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=False, name="MaxPooling"), iaa.MaxPooling(kernel_size=(1, 16), keep_size=True, name="MaxPooling_keep_size"), iaa.MinPooling(kernel_size=(1, 16), keep_size=False, name="MinPooling"), iaa.MinPooling(kernel_size=(1, 16), keep_size=True, name="MinPooling_keep_size"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=False, name="MedianPooling"), iaa.MedianPooling(kernel_size=(1, 16), keep_size=True, name="MedianPooling_keep_size") ] augmenters_segmentation = [ iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="cubic", name="Superpixels_max_size_64_cubic"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=64, interpolation="linear", name="Superpixels_max_size_64_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=128, interpolation="linear", name="Superpixels_max_size_128_linear"), iaa.Superpixels(p_replace=(0.05, 1.0), n_segments=(10, 100), max_size=224, interpolation="linear", name="Superpixels_max_size_224_linear"), iaa.UniformVoronoi(n_points=(250, 1000), name="UniformVoronoi"), iaa.RegularGridVoronoi(n_rows=(16, 31), n_cols=(16, 31), name="RegularGridVoronoi"), iaa.RelativeRegularGridVoronoi(n_rows_frac=(0.07, 0.14), n_cols_frac=(0.07, 0.14), name="RelativeRegularGridVoronoi"), ] augmenters_size = [ iaa.Resize((0.8, 1.2), interpolation="nearest", name="Resize_nearest"), iaa.Resize((0.8, 1.2), interpolation="linear", name="Resize_linear"), iaa.Resize((0.8, 1.2), interpolation="cubic", name="Resize_cubic"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="CropAndPad"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="CropAndPad_edge"), iaa.CropAndPad(percent=(-0.2, 0.2), pad_mode="constant", pad_cval=(0, 255), name="CropAndPad_keep_size"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), keep_size=False, name="Pad"), iaa.Pad(percent=(0.05, 0.2), pad_mode="edge", pad_cval=(0, 255), keep_size=False, name="Pad_edge"), iaa.Pad(percent=(0.05, 0.2), pad_mode="constant", pad_cval=(0, 255), name="Pad_keep_size"), iaa.Crop(percent=(0.05, 0.2), keep_size=False, name="Crop"), iaa.Crop(percent=(0.05, 0.2), name="Crop_keep_size"), iaa.PadToFixedSize(width=width + 10, height=height + 10, pad_mode="constant", pad_cval=(0, 255), name="PadToFixedSize"), iaa.CropToFixedSize(width=width - 10, height=height - 10, name="CropToFixedSize"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="nearest", name="KeepSizeByResize_CropToFixedSize_nearest"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="linear", name="KeepSizeByResize_CropToFixedSize_linear"), iaa.KeepSizeByResize(iaa.CropToFixedSize(height=height - 10, width=width - 10), interpolation="cubic", name="KeepSizeByResize_CropToFixedSize_cubic"), ] augmenters_weather = [ iaa.FastSnowyLandscape(lightness_threshold=(100, 255), lightness_multiplier=(1.0, 4.0), name="FastSnowyLandscape"), iaa.Clouds(name="Clouds"), iaa.Fog(name="Fog"), iaa.CloudLayer(intensity_mean=(196, 255), intensity_freq_exponent=(-2.5, -2.0), intensity_coarse_scale=10, alpha_min=0, alpha_multiplier=(0.25, 0.75), alpha_size_px_max=(2, 8), alpha_freq_exponent=(-2.5, -2.0), sparsity=(0.8, 1.0), density_multiplier=(0.5, 1.0), name="CloudLayer"), iaa.Snowflakes(name="Snowflakes"), iaa.SnowflakesLayer(density=(0.005, 0.075), density_uniformity=(0.3, 0.9), flake_size=(0.2, 0.7), flake_size_uniformity=(0.4, 0.8), angle=(-30, 30), speed=(0.007, 0.03), blur_sigma_fraction=(0.0001, 0.001), name="SnowflakesLayer") ] augmenters = (augmenters_meta + augmenters_arithmetic + augmenters_blend + augmenters_blur + augmenters_color + augmenters_contrast + augmenters_convolutional + augmenters_edges + augmenters_flip + augmenters_geometric + augmenters_pooling + augmenters_segmentation + augmenters_size + augmenters_weather) if only_augmenters is not None: augmenters_reduced = [] for augmenter in augmenters: if any([ re.search(pattern, augmenter.name) for pattern in only_augmenters ]): augmenters_reduced.append(augmenter) augmenters = augmenters_reduced return augmenters
def augmentation_of_image(self, test_image, output_path): self.test_image = test_image self.output_path = output_path #define the Augmenters #properties: A range of values signifies that one of these numbers is randmoly chosen for every augmentation for every batch # Apply affine transformations to each image. rotate = iaa.Affine(rotate=(-90, 90)) scale = iaa.Affine(scale={ "x": (0.5, 0.9), "y": (0.5, 0.9) }) translation = iaa.Affine(translate_percent={ "x": (-0.15, 0.15), "y": (-0.15, 0.15) }) shear = iaa.Affine(shear=(-2, 2)) #plagio parallhlogrammo wihthin a range (-8,8) zoom = iaa.PerspectiveTransform( scale=(0.01, 0.15), keep_size=True) # do not change the output size of the image h_flip = iaa.Fliplr(1.0) # flip horizontally all images (100%) v_flip = iaa.Flipud(1.0) #flip vertically all images padding = iaa.KeepSizeByResize( iaa.CropAndPad(percent=(0.05, 0.25)) ) #positive values correspond to padding 5%-25% of the image,but keeping the origial output size of the new image #More augmentations blur = iaa.GaussianBlur( sigma=(0, 1.22) ) # blur images with a sigma 0-2,a number ofthis range is randomly chosen everytime.Low values suggested for this application contrast = iaa.contrast.LinearContrast((0.75, 1.5)) #change the contrast by a factor of 0.75 and 1.5 sampled randomly per image contrast_channels = iaa.LinearContrast( (0.75, 1.5), per_channel=True ) #and for 50% of all images also independently per channel: sharpen = iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)) #sharpen with an alpha from 0(no sharpening) - 1(full sharpening) and change the lightness form 0.75 to 1.5 gauss_noise = iaa.AdditiveGaussianNoise( scale=0.111 * 255, per_channel=True ) #some random gaussian noise might occur in cell images,especially when image quality is poor laplace_noise = iaa.AdditiveLaplaceNoise( scale=(0, 0.111 * 255) ) #we choose to be in a small range, as it is logical for training the cell images #Brightness brightness = iaa.Multiply( (0.35, 1.65 )) #change brightness between 35% or 165% of the original image brightness_channels = iaa.Multiply( (0.5, 1.5), per_channel=0.75 ) # change birghtness for 25% of images.For the remaining 75%, change it, but also channel-wise. #CHANNELS (RGB)=(Red,Green,Blue) red = iaa.WithChannels(0, iaa.Add( (10, 100))) #increase each Red-pixels value within the range 10-100 red_rot = iaa.WithChannels(0, iaa.Affine( rotate=(0, 45))) #rotate each image's red channel by 0-45 degrees green = iaa.WithChannels(1, iaa.Add( (10, 100))) #increase each Green-pixels value within the range 10-100 green_rot = iaa.WithChannels(1, iaa.Affine( rotate=(0, 45))) #rotate each image's green channel by 0-45 degrees blue = iaa.WithChannels(2, iaa.Add( (10, 100))) #increase each Blue-pixels value within the range 10-100 blue_rot = iaa.WithChannels(2, iaa.Affine( rotate=(0, 45))) #rotate each image's blue channel by 0-45 degrees #colors channel_shuffle = iaa.ChannelShuffle(1.0) #shuffle all images of the batch grayscale = iaa.Grayscale(1.0) hue_n_saturation = iaa.MultiplyHueAndSaturation( (0.5, 1.5), per_channel=True ) #change hue and saturation with this range of values for different values add_hue_saturation = iaa.AddToHueAndSaturation( (-50, 50), per_channel=True) #add more hue and saturation to its pixels #Quantize colors using k-Means clustering kmeans_color = iaa.KMeansColorQuantization( n_colors=(4, 16) ) #quantizes to k means 4 to 16 colors (randomly chosen). Quantizes colors up to 16 colors #Alpha Blending blend = iaa.AlphaElementwise((0, 1.0), iaa.Grayscale((0, 1.0))) #blend depending on which value is greater #Contrast augmentors clahe = iaa.CLAHE(tile_grid_size_px=((3, 21), [ 0, 2, 3, 4, 5, 6, 7 ])) #create a clahe contrast augmentor H=(3,21) and W=(0,7) histogram = iaa.HistogramEqualization( ) #performs histogram equalization #Augmentation list of metadata augmentors OneofRed = iaa.OneOf([red]) OneofGreen = iaa.OneOf([green]) OneofBlue = iaa.OneOf([blue]) contrast_n_shit = iaa.OneOf( [contrast, brightness, brightness_channels]) SomeAug = iaa.SomeOf( 2, [rotate, scale, translation, shear, h_flip, v_flip], random_order=True) SomeClahe = iaa.SomeOf( 2, [ clahe, iaa.CLAHE(clip_limit=(1, 10)), iaa.CLAHE(tile_grid_size_px=(3, 21)), iaa.GammaContrast((0.5, 2.0)), iaa.AllChannelsCLAHE(), iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True) ], random_order=True) #Random selection from clahe augmentors edgedetection = iaa.OneOf([ iaa.EdgeDetect(alpha=(0, 0.7)), iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)) ]) # Search in some images either for all edges or for directed edges.These edges are then marked in a black and white image and overlayed with the original image using an alpha of 0 to 0.7. canny_filter = iaa.OneOf([ iaa.Canny(), iaa.Canny(alpha=(0.5, 1.0), sobel_kernel_size=[3, 7]) ]) #choose one of the 2 canny filter options OneofNoise = iaa.OneOf([blur, gauss_noise, laplace_noise]) Color_1 = iaa.OneOf([ channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation, kmeans_color ]) Color_2 = iaa.OneOf([ channel_shuffle, grayscale, hue_n_saturation, add_hue_saturation, kmeans_color ]) Flip = iaa.OneOf([histogram, v_flip, h_flip]) #Define the augmentors used in the DA Augmentors = [ SomeAug, SomeClahe, SomeClahe, edgedetection, sharpen, canny_filter, OneofRed, OneofGreen, OneofBlue, OneofNoise, Color_1, Color_2, Flip, contrast_n_shit ] for i in range(0, 14): img = cv2.imread(test_image) #read you image images = np.array( [img for _ in range(14)], dtype=np.uint8 ) # 12 is the size of the array that will hold 8 different images images_aug = Augmentors[i].augment_images( images ) #alternate between the different augmentors for a test image cv2.imwrite( os.path.join(output_path, test_image + "new" + str(i) + '.jpg'), images_aug[i]) #write all changed images