示例#1
0
    def __init__(self, hue, sat, val, input_colorspace='rgb'):
        super(HSVShift, self).__init__()
        self.input_colorspace = input_colorspace
        self.hue = Uniform(-hue, hue)
        self.sat = Uniform(1, sat)
        self.val = Uniform(1, val)

        self.flip_val = Binomial(.5)
        self.flip_sat = Binomial(.5)
示例#2
0
    def __init__(self, p=0, name=None, deterministic=False, random_state=None):
        super(VP, self).__init__(name=name,
                                 deterministic=deterministic,
                                 random_state=random_state)

        if ia.is_single_number(p):
            self.p = Binomial(p)
        elif isinstance(p, StochasticParameter):
            self.p = p
        else:
            raise Exception(
                "Expected p to be int or float or StochasticParameter, got %s."
                % (type(p), ))
示例#3
0
class VP(Augmenter):
    def __init__(self, p=0, name=None, deterministic=False, random_state=None):
        super(VP, self).__init__(name=name,
                                 deterministic=deterministic,
                                 random_state=random_state)

        if ia.is_single_number(p):
            self.p = Binomial(p)
        elif isinstance(p, StochasticParameter):
            self.p = p
        else:
            raise Exception(
                "Expected p to be int or float or StochasticParameter, got %s."
                % (type(p), ))

    def _augment_images(self, images, random_state, parents, hooks):
        nb_images = len(images)
        samples = self.p.draw_samples((nb_images, ), random_state=random_state)
        for i in range(nb_images):
            if samples[i] == 1:
                images[i] = np.VP(images[i])
        return images

    def _augment_keypoints(self, keypoints_on_images, random_state, parents,
                           hooks):
        nb_images = len(keypoints_on_images)
        samples = self.p.draw_samples((nb_images, ), random_state=random_state)
        for i, keypoints_on_image in enumerate(keypoints_on_images):
            if samples[i] == 1:
                width = keypoints_on_image.shape[1]
                for keypoint in keypoints_on_image.keypoints:
                    keypoint.x = (width - 1) - keypoint.x
        return keypoints_on_images

    def get_parameters(self):
        return [self.p]
示例#4
0
def main():
    params = [
        ("Binomial(0.1)", Binomial(0.1)),
        ("Choice", Choice([0, 1, 2])),
        ("Choice with p", Choice([0, 1, 2], p=[0.1, 0.2, 0.7])),
        ("DiscreteUniform(0, 10)", DiscreteUniform(0, 10)),
        ("Poisson(0)", Poisson(0)),
        ("Poisson(5)", Poisson(5)),
        ("Discretize(Poisson(5))", Discretize(Poisson(5))),
        ("Normal(0, 1)", Normal(0, 1)),
        ("Normal(1, 1)", Normal(1, 1)),
        ("Normal(1, 2)", Normal(0, 2)),
        ("Normal(Choice([-1, 1]), 2)", Normal(Choice([-1, 1]), 2)),
        ("Discretize(Normal(0, 1.0))", Discretize(Normal(0, 1.0))),
        ("Positive(Normal(0, 1.0))", Positive(Normal(0, 1.0))),
        ("Positive(Normal(0, 1.0), mode='reroll')", Positive(Normal(0, 1.0), mode="reroll")),
        ("Negative(Normal(0, 1.0))", Negative(Normal(0, 1.0))),
        ("Negative(Normal(0, 1.0), mode='reroll')", Negative(Normal(0, 1.0), mode="reroll")),
        ("Laplace(0, 1.0)", Laplace(0, 1.0)),
        ("Laplace(1.0, 3.0)", Laplace(1.0, 3.0)),
        ("Laplace([-1.0, 1.0], 1.0)", Laplace([-1.0, 1.0], 1.0)),
        ("ChiSquare(1)", ChiSquare(1)),
        ("ChiSquare([1, 6])", ChiSquare([1, 6])),
        ("Weibull(0.5)", Weibull(0.5)),
        ("Weibull((1.0, 3.0))", Weibull((1.0, 3.0))),
        ("Uniform(0, 10)", Uniform(0, 10)),
        ("Beta(0.5, 0.5)", Beta(0.5, 0.5)),
        ("Deterministic(1)", Deterministic(1)),
        ("Clip(Normal(0, 1), 0, None)", Clip(Normal(0, 1), minval=0, maxval=None)),
        ("Multiply(Uniform(0, 10), 2)", Multiply(Uniform(0, 10), 2)),
        ("Add(Uniform(0, 10), 5)", Add(Uniform(0, 10), 5)),
        ("Absolute(Normal(0, 1))", Absolute(Normal(0, 1))),
        ("RandomSign(Poisson(1))", RandomSign(Poisson(1))),
        ("RandomSign(Poisson(1), 0.9)", RandomSign(Poisson(1), 0.9))
    ]

    params_arithmetic = [
        ("Normal(0, 1.0)", Normal(0.0, 1.0)),
        ("Normal(0, 1.0) + 5", Normal(0.0, 1.0) + 5),
        ("Normal(0, 1.0) * 10", Normal(0.0, 1.0) * 10),
        ("Normal(0, 1.0) / 10", Normal(0.0, 1.0) / 10),
        ("Normal(0, 1.0) ** 2", Normal(0.0, 1.0) ** 2)
    ]

    params_noise = [
        ("SimplexNoise", SimplexNoise()),
        ("Sigmoid(SimplexNoise)", Sigmoid(SimplexNoise())),
        ("SimplexNoise(linear)", SimplexNoise(upscale_method="linear")),
        ("SimplexNoise(nearest)", SimplexNoise(upscale_method="nearest")),
        ("FrequencyNoise((-4, 4))", FrequencyNoise(exponent=(-4, 4))),
        ("FrequencyNoise(-2)", FrequencyNoise(exponent=-2)),
        ("FrequencyNoise(2)", FrequencyNoise(exponent=2))
    ]

    images_params = [param.draw_distribution_graph() for (title, param) in params]
    images_arithmetic = [param.draw_distribution_graph() for (title, param) in params_arithmetic]
    images_noise = [param.draw_distribution_graph(size=(1000, 10, 10)) for (title, param) in params_noise]

    misc.imshow(np.vstack(images_params))
    misc.imshow(np.vstack(images_arithmetic))
    misc.imshow(np.vstack(images_noise))
示例#5
0
class HSVShift(augmenter_base.ParamatarizedAugmenter):
    """
    Perform random HSV shift on the RGB data.

    MODIFIED FROM LIGHTNET YOLO into imgaug format

    Args:
        hue (Number): Random number between -hue,hue is used to shift the hue.
            The number is specified as a percentage of the available hue space
            (e.g. hue * 255 or hue * 360).
        saturation (Number): Random number between 1,saturation is used to
            shift the saturation; 50% chance to get 1/dSaturation instead of
            dSaturation
        value (Number): Random number between 1,value is used to shift the
            value; 50% chance to get 1/dValue in stead of dValue

    CommandLine:
        python -m netharn.data.transforms.augmenters HSVShift --show

    Example:
        >>> self = HSVShift(0.1, 1.5, 1.5)
        >>> img = demodata_hsv_image()
        >>> aug = self.augment_image(img)
        >>> det = self.to_deterministic()
        >>> assert np.all(det.augment_image(img) == det.augment_image(img))
        >>> # xdoc: +REQUIRES(--show)
        >>> from netharn.util import mplutil
        >>> import ubelt as ub
        >>> mplutil.autompl()
        >>> mplutil.figure(doclf=True, fnum=3)
        >>> self = HSVShift(0.5, 1.5, 1.5)
        >>> pnums = mplutil.PlotNums(5, 5)
        >>> #random_state = self.random_state
        >>> self.reseed(random.Random(0))
        >>> mplutil.imshow(img, colorspace='rgb', pnum=pnums[0], title='orig')
        >>> for i in range(1, len(pnums)):
        >>>     aug = self.augment_image(img)
        >>>     title = 'aug: {}'.format(ub.repr2(self._prev_params, nl=0, precision=3))
        >>>     mplutil.imshow(aug, colorspace='rgb', pnum=pnums[i], title=title)
        >>> mplutil.show_if_requested()

    Ignore:
        >>> from netharn.data.transforms.augmenters import *
        >>> lnpre = ub.import_module_from_path(ub.truepath('~/code/lightnet/lightnet/data/transform/_preprocess.py'))
        >>> self = lnpre.HSVShift(0.1, 1.5, 1.5)
        >>> from PIL import Image
        >>> img = demodata_hsv_image()
        >>> from_ = ub.identity
        >>> #img = Image.fromarray(img)
        >>> #from_ = np.array
        >>> aug = self(img)
        >>> # xdoc: +REQUIRES(--show)
        >>> from netharn.util import mplutil
        >>> import ubelt as ub
        >>> mplutil.autompl()
        >>> mplutil.figure(doclf=True, fnum=1)
        >>> import random
        >>> random.seed(0)
        >>> pnums = mplutil.PlotNums(5, 5)
        >>> mplutil.imshow(from_(img), colorspace='rgb', pnum=pnums[0], title='orig')
        >>> for i in range(1, len(pnums)):
        >>>     aug = self(img)
        >>>     #title = 'aug: {}'.format(ub.repr2(self._prev_params, nl=0, precision=3))
        >>>     title = 'foo'
        >>>     mplutil.imshow(from_(aug), colorspace='rgb', pnum=pnums[i], title=title)
        >>> mplutil.show_if_requested()
    """
    def __init__(self, hue, sat, val, input_colorspace='rgb'):
        super(HSVShift, self).__init__()
        self.input_colorspace = input_colorspace
        self.hue = Uniform(-hue, hue)
        self.sat = Uniform(1, sat)
        self.val = Uniform(1, val)

        self.flip_val = Binomial(.5)
        self.flip_sat = Binomial(.5)

    def _augment_heatmaps(self, *args, **kw):
        # TODO
        raise NotImplementedError
        pass

    def _augment_images(self, images, random_state, parents, hooks):
        return [self.forward(img, random_state) for img in images]

    def _augment_keypoints(self, keypoints_on_images, random_state, parents,
                           hooks):
        return keypoints_on_images

    @profiler.profile
    def forward(self, img, random_state=None):
        assert self.input_colorspace == 'rgb'
        assert img.dtype.kind == 'u' and img.dtype.itemsize == 1

        dh = self.hue.draw_sample(random_state)
        ds = self.sat.draw_sample(random_state)
        dv = self.val.draw_sample(random_state)

        if self.flip_sat.draw_sample(random_state):
            ds = 1.0 / ds
        if self.flip_val.draw_sample(random_state):
            dv = 1.0 / dv

        self._prev_params = (dh, ds, dv)

        # Note the cv2 conversion to HSV does not go into the 0-1 range,
        # instead it goes into (0-360, 0-1, 0-1) for hue, sat, and val.
        img01 = img.astype(np.float32) / 255.0
        hsv = cv2.cvtColor(img01, cv2.COLOR_RGB2HSV)

        hue_bound = 360.0
        sat_bound = 1.0
        val_bound = 1.0

        def wrap_hue(new_hue, hue_bound):
            """ This is about 10x faster than using modulus """
            out = new_hue
            out[out >= hue_bound] -= hue_bound
            out[out < 0] += hue_bound
            return out

        # add to hue
        hsv[:, :, 0] = wrap_hue(hsv[:, :, 0] + (hue_bound * dh), hue_bound)
        # scale saturation and value
        hsv[:, :, 1] = np.clip(ds * hsv[:, :, 1], 0.0, sat_bound)
        hsv[:, :, 2] = np.clip(dv * hsv[:, :, 2], 0.0, val_bound)

        img01 = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
        img255 = (img01 * 255).astype(np.uint8)
        return img255