示例#1
0
 def load_images(self, ids: List[int]) -> Tensor:
     """
     Returns:
         (l, c, w, h) Tensor:
             Tensor of images.
     """
     images: List[Tensor] = [
         imread(self.frame_template.format(i)) for i in ids
     ]
     # Using deterministic parameters to apply exactly
     # the same augmentations to all images in the sequence.
     if self.augment:
         augmenter = Sequential([
             LinearContrast(Deterministic(Uniform(0.7, 1.3))),
             Multiply(
                 Deterministic(Uniform(0.7, 1.3)),
                 per_channel=Deterministic(DiscreteUniform(0, 1)),
             ),
             Sometimes(
                 Deterministic(DiscreteUniform(0, 1)),
                 GaussianBlur(sigma=Deterministic(Uniform(0, 0.7))),
             ),
         ],
                                random_order=True)
         images = augmenter(images=images)
     for i in range(len(images)):
         image = images[i].astype("float32") / 255
         images[i] = tensor(image).permute(2, 0, 1).unsqueeze_(0)
     return cat(images, dim=0)
示例#2
0
 def activator_lbls(images, augmenter, parents, default):
     white_lists = (iaa.Affine, iaa.Sequential, iaa.Sometimes)
     if not isinstance(augmenter, white_lists):
         return False
     if isinstance(augmenter, iaa.Affine):
         augmenter.order = Deterministic(0)
         augmenter.cval = Deterministic(-1)
     return True
    def __init__(self, p):
        super(BinomialColumns, self).__init__()

        if isinstance(p, StochasticParameter):
            self.p = p
        elif ia.is_single_number(p):
            assert 0 <= p <= 1.0, "Expected probability p to be in range [0.0, 1.0], got %s." % (
                p, )
            self.p = Deterministic(float(p))
        else:
            raise Exception(
                "Expected StochasticParameter or float/int value, got %s." %
                (type(p), ))
class BinomialColumns(StochasticParameter):
    def __init__(self, p):
        super(BinomialColumns, self).__init__()

        if isinstance(p, StochasticParameter):
            self.p = p
        elif ia.is_single_number(p):
            assert 0 <= p <= 1.0, "Expected probability p to be in range [0.0, 1.0], got %s." % (
                p, )
            self.p = Deterministic(float(p))
        else:
            raise Exception(
                "Expected StochasticParameter or float/int value, got %s." %
                (type(p), ))

    def _draw_samples(self, size, random_state):
        p = self.p.draw_sample(random_state=random_state)
        assert 0 <= p <= 1.0, "Expected probability p to be in range [0.0, 1.0], got %s." % (
            p, )
        h, w, c = size
        drops = random_state.binomial(1, p, (1, w, c))
        drops_columns = np.tile(drops, (h, 1, 1))
        return drops_columns

    def __repr__(self):
        return self.__str__()

    def __str__(self):
        if isinstance(self.p, float):
            return "BinomialColumns(%.4f)" % (self.p, )
        else:
            return "BinomialColumns(%s)" % (self.p, )
示例#5
0
    def _scale_if_necessary(self, obj, random_state, parents, hooks):
        h, w = obj.shape[:2]
        box_w, box_h = self.size
        ratio = max(box_w / w, box_h / h)

        if ratio <= 1:
            return obj

        self.scale.size = (Deterministic(math.ceil(h * ratio)),
                           Deterministic(math.ceil(w * ratio)))

        if isinstance(obj, ia.Keypoint):
            obj = self.scale._augment_keypoints([obj], random_state, parents,
                                                hooks)
        else:
            obj = self.scale._augment_images([obj], random_state, parents,
                                             hooks)
        return obj[0]
示例#6
0
    def transform(self, image, mode):
        # sample angle
        if mode == ImageMaskTransformMode.Image:
            scale = np.random.uniform(self.from_val, self.to_val)
            self._augmentor.scale = Deterministic(scale)

        image = self._augmentor.augment_image(image)

        return image
示例#7
0
    def transform(self, image, mode):
        # sample angle
        if mode == ImageMaskTransformMode.Image:
            angle = np.random.choice(self._angles)
            self._augmentor.rotate = Deterministic(angle)

        image = self._augmentor.augment_image(image)

        return image
示例#8
0
class BinomialColumns(StochasticParameter):
    def __init__(self, p):
        super(BinomialColumns, self).__init__()
        self.p = Deterministic(float(p))

    def _draw_samples(self, size, random_state):
        p = self.p.draw_sample(random_state=random_state)
        h, w, c = size
        drops = random_state.binomial(1, p, (1, w, c))
        drops_columns = np.tile(drops, (h, 1, 1))
        return drops_columns
    def _augment_keypoints(self, keypoints_on_images, random_state, parents,
                           hooks):
        result = []
        nb_images = len(keypoints_on_images)
        for i in sm.xrange(nb_images):
            keypoint = keypoints_on_images[i]
            h, w = keypoint.shape[:2]
            scale, top_pad, right_pad, bottom_pad, left_pad = self._calculate_scale_pad(
                h, w)

            self.scale.size = (Deterministic(int(h * scale)),
                               Deterministic(int(w * scale))
                               )  #Deterministic(scale)
            self.pad.top = Deterministic(top_pad)
            self.pad.right = Deterministic(right_pad)
            self.pad.bottom = Deterministic(bottom_pad)
            self.pad.left = Deterministic(left_pad)

            scaled = self.scale._augment_keypoints([keypoint], random_state,
                                                   parents, hooks)
            padded = self.pad._augment_keypoints(scaled, random_state, parents,
                                                 hooks)
            result += padded

        return result
示例#10
0
    def _augment_images(self, images, random_state, parents, hooks):
        size = self.size
        result = []
        nb_images = len(images)
        seeds = random_state.randint(0, 10**6, (nb_images, ))
        for i in sm.xrange(nb_images):
            image = images[i]
            image = self._scale_if_necessary(image, random_state, parents,
                                             hooks)
            h, w = image.shape[:2]

            top_px, left_px, bottom_px, right_px = self._crop_points(
                size[0], size[1], w, h, seeds[i])

            self.crop.top = Deterministic(top_px)
            self.crop.left = Deterministic(left_px)
            self.crop.bottom = Deterministic(bottom_px)
            self.crop.right = Deterministic(right_px)
            cropped = self.crop._augment_images([image], random_state, parents,
                                                hooks)
            result += cropped

        return result
示例#11
0
    def __init__(self,
                 shear=(-40, 41),
                 cval=255,
                 vertical=False,
                 name=None,
                 deterministic=False,
                 random_state=None):
        """Initialize the augmentator

        # Arguments
            shear [float or tuple of 2 floats]: if it is a single number, then
                image will be sheared in that degree. If it is a tuple of 2
                numbers, then the shear value will be chosen randomly
            cval [int]: fill-in value to new pixels
        """
        super(ItalicizeLine, self).__init__(name=name,
                                            deterministic=deterministic,
                                            random_state=random_state)

        if isinstance(shear, StochasticParameter):
            self.shear = shear
        elif ia.is_single_number(shear):
            self.shear = Deterministic(shear)
        elif ia.is_iterable(shear):
            ia.do_assert(
                len(shear) == 2,
                "Expected rotate tuple/list with 2 entries, got {} entries.".
                format((len(shear))))
            ia.do_assert(all([ia.is_single_number(val) for val in shear]),
                         "Expected floats/ints in shear tuple/list.")
            self.shear = Uniform(shear[0], shear[1])
        else:
            raise Exception(
                "Expected float, int, tuple/list with 2 entries or "
                "StochasticParameter. Got {}.".format(type(shear)))

        self.cval = cval
        self.vertical = vertical
示例#12
0
    def __init__(self,
                 angle=(-10, 10),
                 cval=255,
                 name=None,
                 deterministic=False,
                 random_state=None):
        """Initialize the augmentator

        # Arguments
            angle [float or tuple of 2 floats]: if it is a single number, then
                image will be rotated in that degree. If it is a tuple of 2
                numbers, then the angle value will be chosen randomly
            cval [int]: fill-in value to new pixels
        """
        super(RotateLine, self).__init__(name=name,
                                         deterministic=deterministic,
                                         random_state=random_state)

        if isinstance(angle, StochasticParameter):
            self.angle = angle
        elif ia.is_single_number(angle):
            self.angle = Deterministic(angle)
        elif ia.is_iterable(angle):
            ia.do_assert(
                len(angle) == 2,
                "Expected rotate tuple/list with 2 entries, got {} entries.".
                format((len(angle))))
            ia.do_assert(all([ia.is_single_number(val) for val in angle]),
                         "Expected floats/ints in angle tuple/list.")
            self.angle = Uniform(angle[0], angle[1])
        else:
            raise Exception(
                "Expected float, int, tuple/list with 2 entries or "
                "StochasticParameter. Got {}.".format(type(angle)))

        self.cval = cval
示例#13
0
文件: aug.py 项目: maeshu/jsk_apc
 def activator_imgs(images, augmenter, parents, default):
     if isinstance(augmenter, iaa.Affine):
         augmenter.order = Deterministic(1)
         augmenter.cval = Deterministic(0)
     return True
示例#14
0
 def __init__(self, p):
     super(BinomialColumns, self).__init__()
     self.p = Deterministic(float(p))
示例#15
0
def main():
    params = [
        ("Binomial(0.1)", Binomial(0.1)),
        ("Choice", Choice([0, 1, 2])),
        ("Choice with p", Choice([0, 1, 2], p=[0.1, 0.2, 0.7])),
        ("DiscreteUniform(0, 10)", DiscreteUniform(0, 10)),
        ("Poisson(0)", Poisson(0)),
        ("Poisson(5)", Poisson(5)),
        ("Discretize(Poisson(5))", Discretize(Poisson(5))),
        ("Normal(0, 1)", Normal(0, 1)),
        ("Normal(1, 1)", Normal(1, 1)),
        ("Normal(1, 2)", Normal(0, 2)),
        ("Normal(Choice([-1, 1]), 2)", Normal(Choice([-1, 1]), 2)),
        ("Discretize(Normal(0, 1.0))", Discretize(Normal(0, 1.0))),
        ("Positive(Normal(0, 1.0))", Positive(Normal(0, 1.0))),
        ("Positive(Normal(0, 1.0), mode='reroll')", Positive(Normal(0, 1.0), mode="reroll")),
        ("Negative(Normal(0, 1.0))", Negative(Normal(0, 1.0))),
        ("Negative(Normal(0, 1.0), mode='reroll')", Negative(Normal(0, 1.0), mode="reroll")),
        ("Laplace(0, 1.0)", Laplace(0, 1.0)),
        ("Laplace(1.0, 3.0)", Laplace(1.0, 3.0)),
        ("Laplace([-1.0, 1.0], 1.0)", Laplace([-1.0, 1.0], 1.0)),
        ("ChiSquare(1)", ChiSquare(1)),
        ("ChiSquare([1, 6])", ChiSquare([1, 6])),
        ("Weibull(0.5)", Weibull(0.5)),
        ("Weibull((1.0, 3.0))", Weibull((1.0, 3.0))),
        ("Uniform(0, 10)", Uniform(0, 10)),
        ("Beta(0.5, 0.5)", Beta(0.5, 0.5)),
        ("Deterministic(1)", Deterministic(1)),
        ("Clip(Normal(0, 1), 0, None)", Clip(Normal(0, 1), minval=0, maxval=None)),
        ("Multiply(Uniform(0, 10), 2)", Multiply(Uniform(0, 10), 2)),
        ("Add(Uniform(0, 10), 5)", Add(Uniform(0, 10), 5)),
        ("Absolute(Normal(0, 1))", Absolute(Normal(0, 1))),
        ("RandomSign(Poisson(1))", RandomSign(Poisson(1))),
        ("RandomSign(Poisson(1), 0.9)", RandomSign(Poisson(1), 0.9))
    ]

    params_arithmetic = [
        ("Normal(0, 1.0)", Normal(0.0, 1.0)),
        ("Normal(0, 1.0) + 5", Normal(0.0, 1.0) + 5),
        ("Normal(0, 1.0) * 10", Normal(0.0, 1.0) * 10),
        ("Normal(0, 1.0) / 10", Normal(0.0, 1.0) / 10),
        ("Normal(0, 1.0) ** 2", Normal(0.0, 1.0) ** 2)
    ]

    params_noise = [
        ("SimplexNoise", SimplexNoise()),
        ("Sigmoid(SimplexNoise)", Sigmoid(SimplexNoise())),
        ("SimplexNoise(linear)", SimplexNoise(upscale_method="linear")),
        ("SimplexNoise(nearest)", SimplexNoise(upscale_method="nearest")),
        ("FrequencyNoise((-4, 4))", FrequencyNoise(exponent=(-4, 4))),
        ("FrequencyNoise(-2)", FrequencyNoise(exponent=-2)),
        ("FrequencyNoise(2)", FrequencyNoise(exponent=2))
    ]

    images_params = [param.draw_distribution_graph() for (title, param) in params]
    images_arithmetic = [param.draw_distribution_graph() for (title, param) in params_arithmetic]
    images_noise = [param.draw_distribution_graph(size=(1000, 10, 10)) for (title, param) in params_noise]

    misc.imshow(np.vstack(images_params))
    misc.imshow(np.vstack(images_arithmetic))
    misc.imshow(np.vstack(images_noise))