示例#1
0
def process_image(args, path):
    global img, img_src, outline, box

    img = cv2.imread(path)
    if img == None or img.size == 0:
        logging.error("Failed to read %s" % path)
        exit(1)

    logging.info("Processing %s..." % path)

    # Scale the image down if its perimeter exceeds the maximum (if set).
    img = common.scale_max_perimeter(img, args.max_size)
    img_src = img.copy()

    # Perform segmentation.
    logging.info("- Segmenting...")
    mask = common.grabcut(img, args.iters, None, args.margin)
    bin_mask = np.where((mask == cv2.GC_FGD) + (mask == cv2.GC_PR_FGD), 255,
                        0).astype('uint8')

    # Obtain contours (all points) from the mask.
    contour = ft.get_largest_contour(bin_mask.copy(), cv2.RETR_EXTERNAL,
                                     cv2.CHAIN_APPROX_NONE)

    # Get bounding rectange of the largest contour.
    box = cv2.boundingRect(contour)

    # Get the outline.
    logging.info("- Obtaining shape...")
    outline = ft.shape_outline(contour, args.k)

    # And draw it.
    logging.info("- Done")
    draw_outline(0, outline, args.k)
示例#2
0
    def __get_shape_outline(self, args, bin_mask):
        """Executes :meth:`features.shape_outline`."""
        if self.bin_mask == None:
            raise ValueError("Binary mask cannot be None")

        k = getattr(args, 'k', 15)

        # Obtain contours (all points) from the mask.
        contour = ft.get_largest_contour(bin_mask.copy(), cv2.RETR_EXTERNAL,
            cv2.CHAIN_APPROX_NONE)
        if contour == None:
            raise ValueError("No contour found for binary image")

        # Get the outline.
        outline = ft.shape_outline(contour, k)

        # Compute the delta's for the horizontal and vertical point pairs.
        shape = []
        for x, y in outline:
            delta_x = x[0] - x[1]
            delta_y = y[0] - y[1]
            shape.append(delta_x)
            shape.append(delta_y)
        shape = np.array(shape, dtype=float)

        # Normalize the features if a scaler is set.
        if self.scaler:
            shape = self.scaler.fit_transform(shape)

        return shape
示例#3
0
    def get_shape_outline(self, args, bin_mask):
        if self.bin_mask == None:
            raise ValueError("Binary mask cannot be None")

        k = getattr(args, 'k', 15)

        # Obtain contours (all points) from the mask.
        contour = ft.get_largest_contour(bin_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        if contour == None:
            raise ValueError("No contour found for binary image")

        # Get the outline.
        outline = ft.shape_outline(contour, k)

        # Compute the delta's for the horizontal and vertical point pairs.
        shape = []
        for x, y in outline:
            delta_x = x[0] - x[1]
            delta_y = y[0] - y[1]
            shape.append(delta_x)
            shape.append(delta_y)

        # Normalize results.
        shape = np.array(shape, dtype=np.float32)
        shape = cv2.normalize(shape, None, -1, 1, cv2.NORM_MINMAX)

        return shape.ravel()
示例#4
0
    def __get_shape_outline(self, args, bin_mask):
        """Executes :meth:`features.shape_outline`."""
        if self.bin_mask == None:
            raise ValueError("Binary mask cannot be None")

        k = getattr(args, 'k', 15)

        # Obtain contours (all points) from the mask.
        contour = ft.get_largest_contour(bin_mask.copy(), cv2.RETR_EXTERNAL,
                                         cv2.CHAIN_APPROX_NONE)
        if contour == None:
            raise ValueError("No contour found for binary image")

        # Get the outline.
        outline = ft.shape_outline(contour, k)

        # Compute the delta's for the horizontal and vertical point pairs.
        shape = []
        for x, y in outline:
            delta_x = x[0] - x[1]
            delta_y = y[0] - y[1]
            shape.append(delta_x)
            shape.append(delta_y)
        shape = np.array(shape, dtype=float)

        # Normalize the features if a scaler is set.
        if self.scaler:
            shape = self.scaler.fit_transform(shape)

        return shape
示例#5
0
def process_image(args, path):
    global img, img_src, outline, box

    img = cv2.imread(path)
    if img == None or img.size == 0:
        logging.error("Failed to read %s" % path)
        exit(1)

    logging.info("Processing %s..." % path)

    # Scale the image down if its perimeter exceeds the maximum (if set).
    img = common.scale_max_perimeter(img, args.max_size)
    img_src = img.copy()

    # Perform segmentation.
    logging.info("- Segmenting...")
    mask = common.grabcut(img, args.iters, None, args.margin)
    bin_mask = np.where((mask == cv2.GC_FGD) + (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8")

    # Obtain contours (all points) from the mask.
    contour = ft.get_largest_contour(bin_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    # Get bounding rectange of the largest contour.
    box = cv2.boundingRect(contour)

    # Get the outline.
    logging.info("- Obtaining shape...")
    outline = ft.shape_outline(contour, args.k)

    # And draw it.
    logging.info("- Done")
    draw_outline(0, outline, args.k)