示例#1
0
def proj_template(in_path,out_path,proj_funcs):
    files.make_dir(out_path)
    paths=files.top_files(in_path)
    for seq_path_i in paths:
        print(seq_path_i)
        seq_i=imgs.read_frames(seq_path_i,as_dict=False)
        proj_seq_i=[proj_i(seq_i) for proj_i in proj_funcs]
        new_imgs=np.concatenate(proj_seq_i,axis=1)
        out_i="%s/%s" % (out_path,seq_path_i.split("/")[-1])
        imgs.save_frames(out_i,new_imgs)
示例#2
0
def extract(model_path, out_path, frame_path, img_type="binary"):
    action_frames = imgs.read_frames(frame_path, True, img_type)
    model = load_model(model_path)
    extractor = Model(inputs=model.input,
                      outputs=model.get_layer("hidden").output)
    X = action_format(action_frames)
    #    raise Exception(X.shape)
    X_feats = model.predict(X)
    names = list(action_frames.keys())
    feat_dict = {names[i]: feat_i for i, feat_i in enumerate(X_feats)}
    single.save_ts_feats(feat_dict, out_path)
示例#3
0
def make_model(in_path,
               out_path,
               n_epochs=5,
               i=None,
               nn_type="basic",
               img_type="binary"):

    action_frames = imgs.read_frames(in_path, True, img_type)
    #    raise Exception(list(action_frames.values())[0].shape)

    train, test = data.split_dict(action_frames)
    assert (equal_dims(train))
    X = action_format(train)
    y = np.array(
        [int(name_i.split("_")[0]) - 1 for name_i in list(train.keys())])
    dims = X.shape
    params = {"input_shape": (dims[1], dims[2], dims[3])}
    if (nn_type == "sim"):
        model = sim_model(X, y, i, params, n_epochs)
    else:
        model = basic_model(X, y, i, params, n_epochs)
    if (out_path):
        model.save(out_path)
示例#4
0
文件: action.py 项目: tjacek/preproc
def action_read(in_path):
    return imgs.read_frames(in_path,True)
示例#5
0
文件: audit.py 项目: tjacek/preproc
def action_shape(in_path):
    frames = imgs.read_frames(in_path)
    for frame_i in frames:
        print(frame_i.shape)