def make_html_map(state: DatasetExportState, base_path: Path) -> dict: html_map = { "css_style": Util.get_css_content(DatasetExportHTMLBuilder.CSS_PATH), "name": state.name, 'immuneML_version': MLUtil.get_immuneML_version(), "full_specs": Util.get_full_specs_path(base_path), "datasets": [{ "dataset_name": dataset.name, "dataset_type": StringHelper.camel_case_to_word_string(type(dataset).__name__), "dataset_size": f"{dataset.get_example_count()} {type(dataset).__name__.replace('Dataset', 's').lower()}", "labels": [{ "label_name": label } for label in dataset.get_label_names()], "formats": [{ "format_name": format_name, "dataset_download_link": os.path.relpath(path=Util.make_downloadable_zip( state.result_path, state.paths[dataset.name][format_name]), start=base_path) } for format_name in state.formats] } for dataset in state.datasets] } return html_map
def make_html_map(state: DatasetExportState, base_path: Path) -> dict: html_map = { "css_style": Util.get_css_content(DatasetExportHTMLBuilder.CSS_PATH), "name": state.name, 'immuneML_version': MLUtil.get_immuneML_version(), "full_specs": Util.get_full_specs_path(base_path), "datasets": [ { "dataset_name": dataset.name, "dataset_type": StringHelper.camel_case_to_word_string(type(dataset).__name__), "dataset_size": f"{dataset.get_example_count()} {type(dataset).__name__.replace('Dataset', 's').lower()}", "labels": [{"label_name": label} for label in dataset.get_label_names()], "preprocessing_sequence": [ { "preprocessing_name": preprocessing.__class__.__name__, "preprocessing_params": ", ".join([f"{key}: {value}" for key, value in vars(preprocessing).items()]) } for preprocessing in state.preprocessing_sequence ] if state.preprocessing_sequence is not None else [], "show_preprocessing": state.preprocessing_sequence is not None and len(state.preprocessing_sequence) > 0, "formats": [ { "format_name": format_name, "dataset_download_link": os.path.relpath(path=Util.make_downloadable_zip(state.result_path, state.paths[dataset.name][format_name]), start=base_path) } for format_name in state.formats ] } for dataset in state.datasets ] } return html_map
def make_html_map(state: SimulationState, base_path: Path) -> dict: html_map = { "css_style": Util.get_css_content(SimulationHTMLBuilder.CSS_PATH), "name": state.name, 'immuneML_version': MLUtil.get_immuneML_version(), "full_specs": Util.get_full_specs_path(base_path), "dataset_name": state.resulting_dataset.name if state.resulting_dataset.name is not None else state.resulting_dataset.identifier, "dataset_type": StringHelper.camel_case_to_word_string( type(state.resulting_dataset).__name__), "example_count": state.resulting_dataset.get_example_count(), "dataset_size": f"{state.resulting_dataset.get_example_count()} {type(state.resulting_dataset).__name__.replace('Dataset', 's').lower()}", "labels": [{ "label_name": label } for label in state.resulting_dataset.get_label_names()], "formats": [{ "format_name": format_name, "dataset_download_link": os.path.relpath(path=Util.make_downloadable_zip( state.result_path, state.paths[state.resulting_dataset.name][format_name]), start=base_path) } for format_name in state.formats], "implantings": [ Util.to_dict_recursive(implanting, base_path) for implanting in state.simulation.implantings ] } return html_map