def load_and_test(): x_train, y_train, x_test, y_test = load_data() model = load_data(expanduser("~/emotion/model.h5")) accuracy, fbeta = test_model(model, x_test) print("Accuracy: %s" % accuracy) print("F-Beta: %s" % fbeta)
def run(sets): data_set = load_data() print('Data loaded.') for i in sets: s = time() f = FeatureSetGenerator(data_set=data_set, size=i, full_init=True, load_from_file=False, export=True) print('Saved featureset with {0}% of data. Time Taken:{1}'.format(i*100, time()-s)) print(Counter(f.data_set['Label']))
def main(): x_train, y_train, x_test, y_test = load_data() model = Sequential() model.add( Conv2D(32, kernel_size=(11, 11), strides=4, padding="same", activation='relu', input_shape=(48, 48, 1))) model.add(MaxPooling2D(pool_size=(3, 3), strides=2, padding="valid")) model.add( Conv2D(32, kernel_size=(5, 5), strides=1, padding="same", activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=2, padding="valid")) model.add( Conv2D(32, kernel_size=(3, 3), strides=1, padding="same", activation='relu')) model.add( Conv2D(32, kernel_size=(3, 3), strides=1, padding="same", activation='relu')) model.add( Conv2D(32, kernel_size=(3, 3), strides=1, padding="same", activation='relu')) model.add(Dense(1024, activation='relu')) model.add(Dense(512, activation='relu')) model.add(Dense(7, activation='softmax')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=128, epochs=5, verbose=1, validation_data=(x_test, y_test)) model.save(expanduser("~/emotion/alex_net.h5")) accuracy, fbeta = test_model(model, x_test, y_test) print("Accuracy: %s" % accuracy) print("F-Beta: %s" % fbeta)
def run(sets, reload_dataset=False): if reload_dataset: source = {'eval': cfg.EVAL} target = 'C:\\Users\\Josef\\PycharmProjects\\QC-Yes-No\\Corpus\\Evaluation\\' create_dataset(source, target) test_data = import_data.load_data('C:\\Users\\Josef\\PycharmProjects\\QC-Yes-No\\Corpus\\Evaluation\\data_ready.csv') #sets = [0.1]#, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] for s in sets: fs = util.load_pickle(name='fs_' + str(s), path='..\\pickles\\feature_sets\\') t = test_fs.TestFS(test_data) t.generate_features(fs) t.export(name=str(s), path='..\\pickles\\test_features\\fs_test_') print('Exported test for {}'.format(str(s)))
def main(): ## Import and prune the data. ## Note that features data has been normalized. (X_train, y_train), (X_test, y_test) = load_data(); ## Convert label classification to one-hot format (if not using SparseCategoricalCrossentropy). #y_train = one_hot( y_train); #y_test = one_hot( y_test); model = NN_Model(); ## Initiate NN Model. model.train_NN( X_train, y_train); ## Train NN model using training dataset. model.plot_training_model(); ## Plot the Train and validation accuracy. ## Evaluating test dataset accuracy. print(" Test Dataset Accuracy:") model.test_accuracy(X_test, y_test); ## loss: 0.2633 - accuracy: 0.9308. return 0;
def data_preperation(num_of_subject=-1, proprtions=[0.7, 0.9], cross_subject=True, down=True): pseudo_random(configurations.random_seed) X, Y, Z = load_data(import_model_data, num_of_subject, label_type=1, concat=cross_subject) # equalize the number of different labels if down: X, Y, Z = down_sampling(X, Y, Z) else: X, Y, Z = over_sampling(X, Y, Z) if cross_subject: train_dataset, validation_dataset, test_dataset = trial_data_split( X, Y, Z, proprtions) else: train_dataset, validation_dataset, test_dataset = subjects_data_split( X, Y, Z, proprtions) return train_dataset, validation_dataset, test_dataset
import numpy as np from import_data import load_data from PIL import Image import keras from keras.models import Model, load_model # Load trained unet model loaded_model = load_model("Saved_Model/trained_model.h5") loaded_model.set_weights(loaded_model.get_weights()) # Retrieve raw test images, label_name, height, and width. images, label_names, height, width = load_data(mode="Test") for i in range(len(images)): img = images[i] # (height, width, channels) -> (1, height, width, channels) img = np.expand_dims(img, axis=0) prediction = loaded_model.predict(img, verbose=1) prediction = np.squeeze(prediction) # Generate binary mask by rounding up values. prediction = np.round(prediction) prediction = prediction * 255. # Generate image. img = Image.fromarray(prediction) if img.mode != 'RGB': img = img.convert('RGB') # Resize the image to original size. img = img.resize((width[i], height[i]), Image.ANTIALIAS) print img.size img.save(label_names[i])
def main(): x_data, y_data = load_data() ## Set parameter to True for initial download. ## Once data is present, set this to False to ## prevent re-downloading data. ## Plotting the Iris Petal and Sepal length and width. plot_iris_data(x_data, y_data) y_data = one_hot(y_data) #Split data: 80% test set, 20% validation set. i_80 = int(len(y_data) * 0.8) x_train, y_train = x_data[:i_80], y_data[:i_80] x_test, y_test = x_data[i_80:], y_data[i_80:] iris_nn = NN_Model( x_train, ## input data. y_train, ## output data. 3, ## 3 NN layers: Input, hidden-layer, output. [4, 4, 3]) ## num of nodes for each layer. if Grad_Descent_Method: print("\nNeural Network XNOR - using GRADIENT DESCENT ITERATION\n", "#" * 30, "\n") # File location where learned weight is saved. theta_file = CURRENT_PATH + r'/' + 'theta.npy' if LOAD_PREV_THETAS: flat_thetas = np_load(theta_file) iris_nn.unflatten_Thetas(flat_thetas) if CONTINUOUS_TRAINING: iris_nn.train_NN() np_save(theta_file, iris_nn.flatten_Thetas()) else: iris_nn.train_NN() np_save(theta_file, iris_nn.flatten_Thetas()) # Display final cost after learning iterations. print("Final Cost J = ", iris_nn.J_cost(iris_nn.a[-1])) if PLOT_COST: # Plot the J Cost vs. # of iterations. J should coverge as iteration increases. x_axis = range(len(iris_nn.J_cost_values)) y_axis = iris_nn.J_cost_values plt.plot(x_axis, y_axis, label='J_cost vs. # of Iterations') plt.show() # Test model accuracy on Validation/Test set. acc_count = 0 for i in range(len(x_test)): x_input = x_test[i].flatten() y_val = np.argmax(y_test[i]) y_pred = iris_nn.predict(x_input)[0] #print(y_pred, y_val); if y_pred == y_val: acc_count += 1 print("Test Accuraccy = {}".format(acc_count / len(x_test))) return 0
from import_data import load_data from feature_set_generator import FeatureSetGenerator from pympler import asizeof from pympler.classtracker import ClassTracker from time import time import util import classifiers as c from copy import copy from collections import Counter tracker = ClassTracker() data_set = load_data() print('Data loaded.') trained = util.load_pickle(name='fs_1', path='..\\pickles\\feature_sets\\') test = util.load_pickle(name='fs_test_1', path='..\\pickles\\test_features\\') test_data = test['data_set'] featureset = 'fs_words_bigrams_pos' X_train, y_train = trained[featureset], trained['labels'] X_test, y_test = test[featureset], test['labels'] feat_size = X_train.shape[1] da = copy(test_data) da['Feature'] = da['Feature'].apply(' '.join) norm = Counter(da['Label'])[0] / Counter(da['Label'])[1] counts = {} for word in trained['bag_words'][1:]:
folders = ['MM09', 'MM10', 'MM11', 'MM12', 'MM14','MM15', 'MM16', 'MM18', 'MM19', 'MM20', 'MM21'] path = "C:/Users\SB00745777\OneDrive - Ulster University\KaraOne\Data/" #####Variables required for computing windows##### samples = 5000 window_size = .1 n_bins = samples*window_size window_ratio = samples/n_bins n_windows = int(window_ratio*2 - 1) #####Open folders/files, window and save##### for f in folders: print("Computing windows for folder " + f) new_path = path + f data = load_data(new_path,"EEG_Data","EEG_Data") data = data['EEG'] data = np.ravel(data) data = pd.DataFrame(data[0]) window_all_trials = [] all_windows = [] for tr in data: window = [] ovlp = float(n_bins/2) start = int(np.round(ovlp+1)) end = int(np.round(n_bins + ovlp+1)) m = 1 for i in range(0, n_windows - 2):
lyrics = lyrics.replace(c, "") elif not is_ascii(c): lyrics = lyrics.replace(c, "") # remove double spaces or triple spaces: lyrics = lyrics.replace(" ", " ") lyrics = lyrics.replace(" ", " ") entry['lyrics'] = lyrics invalid_entries.append(entry) # write clean data to lyrics3_0.txt print("write to file") out = open(dir + "/data/lyrics3_0.txt", 'w', encoding='UTF-8') out.write("index,song,year,artist,genre,lyrics\n") for entry in invalid_entries: sb = entry['index'] + "," + entry['song'] + "," + entry['year'] + "," + entry['artist'] + "," + entry['genre'] + ",\"" + entry['lyrics'] + "\"\n" out.write(sb) if __name__ == '__main__': df = import_data.load_data() clean_data(df) # df = import_data.load_clean_data() # print(df[0:10])
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 13 22:50:49 2020 @author: lily """ import pandas as pd import os import import_data import numpy as np import matplotlib.pyplot as plt from datetime import datetime ## import data x_train, y_train, x_test, y_test = import_data.load_data() # divide the original training data into taining set and validation set,80%-training, 20%-validation index = np.arange(0, x_train.shape[0]) train_length = int(0.8 * index.shape[0]) train_indices = index[:train_length] vali_indices = index[train_length:] SVM_x_train = x_train[train_indices] SVM_y_train = y_train[train_indices] SVM_x_vali = x_train[vali_indices] SVM_y_vali = y_train[vali_indices] #1(a)training for different C #training for different C # from sklearn import svm from sklearn.svm import LinearSVC
#External imports import statsmodels.api as sm from statsmodels.formula.api import glm import pandas as pd import numpy as np from matplotlib import pyplot as plt # pd.set_option("display.max_rows", None, "display.max_columns", None) #My imports from import_data import load_data from construct_regressors import construct_regressors #LOAD DATA rat_data_file = "/Users/laurence/Desktop/Neuroscience/mproject/data/modeling_workflow_example/ratdata.mat" data = load_data(rat_data_file) """Choices / Code to convert choices into binary to solve concat error""" """Only analyze trials that are non-vilations and of free choice.""" good_trials = data.loc[(data["sides"] == "l") | (data["sides"] == "r")] good_trials = data.loc[(data["trial_types"] == "f")] choices = np.asarray(good_trials["sides"]) for choice in range(len(choices)): if choices[choice] == "l": choices[choice] = 0 elif choices[choice] == "r": choices[choice] = 1 elif choices[choice] == "v": #Will need to remove this code choices[choice] = 0 print("Error, violation trials should have been removed") else: print(
activation="relu", padding="same")(merged_layer_4) convolutional_layer_18 = Conv2D( filters=64, kernel_size=[3, 3], kernel_initializer=initializers.he_normal(seed=1), activation="relu", padding="same")(convolutional_layer_17) convolutional_layer_19 = Conv2D( filters=2, kernel_size=[3, 3], kernel_initializer=initializers.he_normal(seed=1), activation="relu", padding="same")(convolutional_layer_18) convolutional_layer_20 = Conv2D( filters=1, kernel_size=[1, 1], activation="sigmoid")(convolutional_layer_19) model = Model(input=input_layer, output=convolutional_layer_20) model.compile(loss="binary_crossentropy", optimizer=optimizers.Adam(lr=0.00001), metrics=['accuracy']) return model images, labels = load_data(mode="Train") model = unet_model() print model.summary() pd.DataFrame(model.fit(images, labels, epochs=20, verbose=1).history).to_csv("Saved_Model/history.csv") model.save("Saved_Model/trained_model.h5")
X_second = X[Y_bool] X_second = X_second * 4 Y_second = Y[Y_bool] Y_second = Y_second * 4 X = np.vstack((X, X_second)) Y = np.vstack((Y, Y_second)) X, Y = shuffle(X, Y) model = Model() model.init_random_weights(X.shape[1]) model.fit(X, Y, l1, l2, rate, epochs) # TEST X, Y = load_data() Y_bool = (Y < 2) Y_bool = np.reshape(Y_bool, Y_bool.shape[0]) X = X[Y_bool] Y = Y[Y_bool] def test(IND): global model TEST_INPUT = X[IND] TEST_INPUT = TEST_INPUT / TEST_INPUT.mean() W = read_numpy_array_from_path("results/best_weights.csv") B = read_numpy_array_from_path("results/bias.csv") model = Model()
loss='huber', f_scale=0.1, args=(t, amplitude_envelope)) return res_hub def fun(x, t, y): return x[0] * np.exp(-x[1] * t) + x[2] - y def gen_data(t, a, b, c): return a * np.exp(-b * t) + c if __name__ == '__main__': t, A = load_data('./ztpi_data.txt') y_lsq = gen_data(t, *lsq_resutls(t, A).x) y_soft_l1 = gen_data(t, *softL1_results(t, A).x) y_huber = gen_data(t, *huber_results(t, A).x) print( 'To samo co u Piotra inna biblioteka - zwykla matoda najmniejszych kawdratow - wynik ten sam' ) print( f'LSF a: {lsq_resutls(t, A).x[0]:.3}, b: {lsq_resutls(t, A).x[1]:.3} c: {lsq_resutls(t, A).x[2]:.3}' ) print('Przyklad funkcji odpornej 1') print( f'Soft L1 a: {softL1_results(t, A).x[0]:.3}, b: {softL1_results(t, A).x[1]:.3} c: {softL1_results(t, A).x[2]:.3}' ) print('Przyklad funkcji odpornej 2')