示例#1
0
def calcElevEffectiveness(inputFile):
    '''
    DESCRIPTION:    This function calculates the elevator effectiveness (Cmdelta), which is a constant value found from the measurements when changing xcg.
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n
    ... SI [Condition]:                 By default set to SI=True\n

    OUTPUT:\n
    ... Cmdelta [float]:                Elevator effectiveness
    '''

    # Import data
    param          = imPar.parametersStatic()
    static2b       = imStat.staticMeas(inputFile, 'static2b', SI=True)
    aeroCoeff      = calcAeroCoeff(inputFile, 'static2b')
    static2bWeight = imWeight.calcWeightCG(inputFile, 'static2b')

    # Obtain values from data
    cbar   = param.c
    delta  = static2b['delta'].to_numpy()
    delta1 = delta[0]
    delta2 = delta[1]
    Cn     = aeroCoeff['Cl'].to_numpy()
    CnAvg  = np.average( Cn )
    xcg    = static2bWeight['Xcg'].to_numpy()
    xcg1   = xcg[0]
    xcg2   = xcg[1]

    # Calculation
    Cmdelta = -1 * ( CnAvg * (xcg2 - xcg1) / cbar ) / ( delta2 - delta1 )
    return Cmdelta
示例#2
0
def calcElevContrForce(inputFile):
    '''
    DESCRIPTION:    This function calculates the reduced elevator control force for each meassurement taken during the second stationary measurement series.
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n
    ... SI [Condition]:                 By default set to SI=True\n

    OUTPUT:\n
    ... FeRed [Arary]:                  Numpy array containing the reduced elevator control force
    '''

    # Import data
    param          = imPar.parametersStatic()
    static2a       = imStat.staticMeas(inputFile, 'static2a', SI=True)
    static2aWeight = imWeight.calcWeightCG(inputFile, 'static2a')

    # Obtain values from data
    Ws = param.Ws
    Fe = static2a['Fe'].to_numpy()
    W  = static2aWeight['Weight'].to_numpy()

    # Calculation
    FeRed = Fe * Ws / W
    return FeRed
示例#3
0
def calcAeroCoeff(inputFile, dataSet):
    '''
    DESCRIPTION:    This function calculates the lift coefficient for the static measurements. (CL \approx CN)
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n
    ... dataSet [String]:               Name of data set; choose between 'static1', 'static2a' or 'static2b'\n
    ... SI [Condition]:                 By default set to SI=True\n

    OUTPUT:\n
    ... aeroCoeff [Dataframe]:          Pandas dataframe containing Cl, Cd, e, Cla, Cd0, aoa0   
    '''

    # Import data
    param            = imPar.parametersStatic()
    static           = imStat.staticMeas(inputFile, dataSet)
    staticNotSI      = imStat.staticMeas(inputFile, dataSet, SI=False)
    staticFlightCond = imStat.staticFlightCondition(inputFile, dataSet)
    staticTp         = imStat.staticThrust(inputFile, dataSet)
    staticWeight     = imWeight.calcWeightCG(inputFile, dataSet)

    # Obtain vales from data
    S   = param.S
    A   = param.A
    aoa_rad = static['aoa'].to_numpy()
    aoa_deg = staticNotSI['aoa'].to_numpy()
    rho = staticFlightCond['rho'].to_numpy()
    Vt  = staticFlightCond['Vt'].to_numpy()
    W   = staticWeight['Weight'].to_numpy()
    Tp  = staticTp['Tp'].to_numpy()

    # Calculations
    Cl = W / (0.5 * rho * Vt**2 * S)
    Cd = Tp / (0.5 * rho * Vt**2 * S)
    
    aeroCoeff = {}

    if dataSet == 'static1':
        Cl_aoa = stats.linregress(aoa_deg,Cl)
        Cd_Cl2 = stats.linregress(Cl**2,Cd)

        Cla = Cl_aoa.slope
        aoa0 = -Cl_aoa.intercept / Cla
        e = 1/(np.pi*A*Cd_Cl2.slope)
        Cd0 = Cd_Cl2.intercept

        dataNames = ['Cl','Cd','e','Cla','Cd0','aoa0']
        for name in dataNames:
            aeroCoeff[name] = locals()[name]
    else:
        dataNames = ['Cl','Cd']
        for name in dataNames:
            aeroCoeff[name] = locals()[name]
    aeroCoeff = pd.DataFrame(data=aeroCoeff)

    return aeroCoeff
示例#4
0
def calcAeroCoeff(inputFile):
    '''
    DESCRIPTION:    This function calculates the aerodynamic coefficient for the first static measurement. (CL \approx CN)
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n

    OUTPUT:\n
    ... CLa [float]:                    Lift curve slope
    ... aoa0 [float]:                   Zero lift angle of attack
    ... e [float]:                      Oswald efficiency factor
    ... CD0 [float]:                    Zero lift drag
    ... aeroCoeff [Dataframe]:          Pandas dataframe containing CL, CD  
    '''

    # Import data

    param = imPar.parametersStatic()
    static = imStat.staticMeas(inputFile, 'static1')
    staticNotSI = imStat.staticMeas(inputFile, 'static1', SI=False)
    staticFlightCond = imStat.staticFlightCondition(inputFile, 'static1')
    staticTp = imStat.staticThrust(inputFile, 'static1')
    staticWeight = imWeight.calcWeightCG(inputFile, 'static1')

    # Obtain vales from data
    S = param.S
    A = param.A
    aoa_rad = static['aoa'].to_numpy()
    aoa_deg = staticNotSI['aoa'].to_numpy()
    rho = staticFlightCond['rho'].to_numpy()
    Vt = staticFlightCond['Vt'].to_numpy()
    W = staticWeight['Weight'].to_numpy()
    Tp = staticTp['Tp'].to_numpy()

    # Calculations
    CL = W / (0.5 * rho * Vt**2 * S)
    CD = Tp / (0.5 * rho * Vt**2 * S)
    CL_aoa = stat.linregress(aoa_rad, CL)
    CD_CL2 = stat.linregress(CL**2, CD)

    CLa = CL_aoa.slope
    aoa0 = -CL_aoa.intercept / CLa
    e = 1 / (np.pi * A * CD_CL2.slope)
    CD0 = CD_CL2.intercept

    aeroCoeff = {}
    dataNames = ['CL', 'CD']
    for name in dataNames:
        aeroCoeff[name] = locals()[name]
    aeroCoeff = pd.DataFrame(data=aeroCoeff)

    return CLa, aoa0, e, CD0, aeroCoeff
示例#5
0
def plotElevTrimCurve(inputFile):
    '''
    DESCRIPTION:    Function description
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n

    OUTPUT:\n
    ... None, but running this function creates a figure which can be displayed by calling plt.plot()
    '''

    # Import data
    static2a_nonSI = imStat.staticMeas(inputFile,'static2a',SI=False)
    Weight2a     = imWeight.calcWeightCG(inputFile, 'static2a')
    
    # Obtain values from data
    aoa_deg   = static2a_nonSI['aoa'].to_numpy()
    delta_deg = static2a_nonSI['delta'].to_numpy()
    Xcg      = np.average(Weight2a['Xcg'].to_numpy())
    Weight   = np.average(Weight2a['Weight'].to_numpy())

    # Calculations
    linregress = stats.linregress(aoa_deg, delta_deg)

    # Start plotting
    plt.figure('Elevator trim curve',[10,7])
    plt.title("Elevator Trim Curve",fontsize=22)
    plt.scatter(aoa_deg,delta_deg)
    plt.plot(np.sort(aoa_deg),np.sort(aoa_deg)*linregress.slope + linregress.intercept, 'k--')
    plt.ylim(1.2*max(delta_deg),1.2*min(delta_deg))
    plt.grid()

    plt.xlim(0.9*np.sort(aoa_deg)[0],1.1*np.sort(aoa_deg)[-1])
    plt.xlabel(r'$\alpha$   [$\degree$]',fontsize=16)
    plt.ylabel(r'$\delta_{e}$   [$\degree$]',fontsize=16)
    plt.axhline(0,color='k')

    props = dict(boxstyle='round', facecolor='white', alpha=0.5)
    # plt.text(1.03*np.sort(aoa_deg)[1],1.05*delta_deg[1],'$x_{cg}$ = 7.15 m\nW = 59875 kg',bbox=props,fontsize=16)
    plt.text(1.03*np.sort(aoa_deg)[1],1.05*delta_deg[1],'$x_{cg}$ = '+str(round(Xcg,2))+' m\nW = '+str(int(round(Weight,0)))+' kg',bbox=props,fontsize=16)

    props = dict(boxstyle='round', facecolor='white', alpha=0.5)
    plt.show()
    return
示例#6
0
def plotRedElevContrForceCurve(inputFile):
    '''
    DESCRIPTION:    Function description
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n

    OUTPUT:\n
    ... None, but running this function creates a figure which can be displayed by calling plt.plot()
    '''


    # Import data
    static2a     = imStat.staticMeas(inputFile,'static2a')
    flightCond2a = imStat.staticFlightCondition(inputFile,'static2a')
    Weight2a     = imWeight.calcWeightCG(inputFile, 'static2a')
    
    # Obtain values from data
    VeRed = np.sort( flightCond2a['VeRed'].to_numpy() )
    Xcg   = np.average(Weight2a['Xcg'].to_numpy())
    deltaTr = np.rad2deg(np.average(static2a['deltaTr']))

    # Calculation
    FeRed = np.sort(calcElevContrForce(inputFile))

    # Start plotting
    plt.figure('Elevator Force Control Curve',[10,7])
    plt.title("Reduced Elevator Control Force Curve",fontsize=22)
    plt.plot(VeRed,FeRed,marker='o')

    plt.xlim(0.9*VeRed[0],1.1*VeRed[-1])
    plt.xlabel(r'$V_{e}^{*}$   [$\dfrac{m}{s}$]',fontsize=16)
    plt.ylim(1.2*FeRed[-1],1.2*FeRed[0])
    plt.ylabel(r'$F_{e}^{*}$   [N]',fontsize=16)
    plt.axhline(0,color='k')

    props = dict(boxstyle='round', facecolor='white', alpha=0.5)
    plt.text(1.03*VeRed[2],1.05*FeRed[2],'$x_{cg}$ = '+str(round(Xcg,2))+' m\n$\delta_{t_{e}}$ = '+str(round(deltaTr,3))+'$\degree$',bbox=props,fontsize=16)
    plt.grid()
    return
示例#7
0
def staticFlightCondition(inputFile, dataSet):
    '''
    DESCRIPTION:    This function calculates flight conditions using the measurement data. 
    ========
    INPUT:\n
    ... inputFile [String]:             Name of excel file; choose between 'reference' or 'actual'\n
    ... dataSet [String]:               Name of data set; choose between 'static1', 'static2a' or 'static2b'\n
    ... SI [Condition]:                 By default set to SI=True\n

    OUTPUT:\n
    ... staticFlightCond [Dataframe]:   Pandas dataframe containing flight condition values that are not measured.
    '''

    # Import data
    meas = staticMeas(inputFile, dataSet, SI=True)
    param = imPar.parametersStatic()
    staticWeight = imWeight.calcWeightCG(inputFile, dataSet)

    # Constant values
    pres0 = param.pres0
    rho0 = param.rho0
    Temp0 = param.Temp0
    g0 = param.g
    Ws = param.Ws
    gamma = param.gamma
    lamb = param.lamb
    R = param.R

    Vi = meas['Vi'].to_numpy()
    Vc = Vi - 2 * 0.514444444
    TempMeas = meas['TAT'].to_numpy()
    hp = meas['hp'].to_numpy()
    W = staticWeight['Weight'].to_numpy()

    # Calculation
    pres = pres0 * (1 + lamb * hp / Temp0)**(-g0 / (lamb * R))
    Mach = np.sqrt(
        2 / (gamma - 1) *
        ((1 + pres0 / pres *
          ((1 + (gamma - 1) /
            (2 * gamma) * rho0 / pres0 * Vc**2)**(gamma / (gamma - 1)) - 1))**(
                (gamma - 1) / gamma) - 1))
    Temp = TempMeas / (1 + (gamma - 1) / 2 * Mach**2)

    a = np.sqrt(gamma * R * Temp)
    Vt = Mach * a
    rho = pres / (R * Temp)
    Ve = Vt * np.sqrt(rho / rho0)

    VeRed = Ve * np.sqrt(Ws / W)

    Tisa = Temp0 + lamb * meas['hp'].to_numpy()
    DeltaTisa = Temp - Tisa

    staticFlightCond = {}
    dataNames = [
        'pres', 'Mach', 'Temp', 'a', 'Vt', 'rho', 'Ve', 'VeRed', 'DeltaTisa'
    ]
    for name in dataNames:
        staticFlightCond[name] = locals()[name]
    staticFlightCond = pd.DataFrame(data=staticFlightCond)
    return staticFlightCond