def test_classif_simple(self): """ test the training of classif with expected F1 score close to one """ data_train, labels_train = generate_data() data_test, labels_test = generate_data() for n in CLASSIFIER_NAMES: logging.info('created classifier: %s', n) clf = create_classifiers()[n] clf.fit(data_train, labels_train) self.classif_eval(clf, data_train, labels_train, data_test, labels_test)
Copyright (C) 2014-2018 Jiri Borovec <*****@*****.**> """ import logging import os import sys import unittest import numpy as np from sklearn import metrics sys.path.append(os.path.abspath(os.path.join('..', '..'))) # Add path to root from imsegm.classification import create_classif_search_train_export, create_classifiers CLASSIFIER_NAMES = create_classifiers().keys() def generate_data(nb_samples=100, nb_classes=3, dim_features=4): """ generating separable features pace with specific number of classes, samples per class and feature dimension :param int nb_samples: number of samples per class :param int dim_features: dimension of feature space :param int nb_classes: number of classes :return tuple(list(int),ndarray): list(int), np.array<nb_samples, dim_fts> """ labels = range(int(nb_classes)) labels = list(labels) * nb_samples # noise around zero noise = np.random.rand(len(labels), dim_features) - 0.5
Copyright (C) 2014-2018 Jiri Borovec <*****@*****.**> """ import os import sys import unittest import logging import numpy as np from sklearn import metrics sys.path.append(os.path.abspath(os.path.join('..', '..'))) # Add path to root import imsegm.classification as seg_clf CLASSIFIER_NAMES = seg_clf.create_classifiers().keys() def generate_data(nb_samples=100, nb_classes=3, dim_fts=4): """ generating separable features pace with specific number of classes, samples per class and feature dimension :param nb_samples: int, number of samples per class :param dim_fts: int, dimension of feature space :param nb_classes: int, number of classes :return: [int], np.array<nb_samples, dim_fts> """ labels = range(int(nb_classes)) labels = list(labels) * nb_samples # noise around zero noise = np.random.rand(len(labels), dim_fts) - 0.5