示例#1
0
    def create_features(self):
        print('CREATING FEATURES')
        for im in self.im_list:
            print(os.path.basename(im))
            img = cv2.imread(im, 0)  #queryimage # left image
            img, scale = imsz.imRescaleMaxDim(img,
                                              self.image_max_dim,
                                              boUpscale=False,
                                              interpolation=1)

            kp, des = self.detector.detectAndCompute(img, None)
            #des=des.astype('float32')
            self.feats[im] = (kp, des)

        return
示例#2
0
jpg_list = imsz.imagelist_in_depth(im_dir, level=1)

i1 = 1
im_file1 = jpg_list[i1]
i2 = 2
im_file2 = jpg_list[i2]
#im_file1=r'd:\\DATA\\MAV1\\Images\\Selection_20190124_120409_2800_3400\\roi_0_2882.jpg'
#im_file2=r'd:\\DATA\\MAV1\\Images\\Selection_20190124_120409_2800_3400\\roi_1_2882.jpg'

img1 = cv2.imread(im_file1, 0)  #queryimage # left image
img2 = cv2.imread(im_file2, 0)  #trainimage # right image

##
img1, scale = imsz.imRescaleMaxDim(img1,
                                   max_dim,
                                   boUpscale=False,
                                   interpolation=1)
img2, scale = imsz.imRescaleMaxDim(img2,
                                   max_dim,
                                   boUpscale=False,
                                   interpolation=1)

## SIFT
# sift = cv2.xfeatures2d.SIFT_create(800)

detector, matcher = hc.init_feature(det_type, n_feature_point=1000)

kp1, des1 = detector.detectAndCompute(img1, None)
kp2, des2 = detector.detectAndCompute(img2, None)

# draw rich keypoints
示例#3
0
#################
base_dir = r'd:\DATA\EON_LOCAL\SESSIONS\20200218_092900'
#run_id='20180907_103336_sel1'
run_id = '20200218_092854964_Agent4_Master'
ext = '.jpg'
image_max_dim = 1014

im_dir = os.path.join(base_dir, run_id)
jpg_list = imsz.imagelist_in_depth(im_dir, level=1)

frame_id = 0
wait_time = 100
while True:
    frame = cv2.imread(jpg_list[frame_id], 0)  #queryimage # left image
    frame, scale = imsz.imRescaleMaxDim(frame,
                                        image_max_dim,
                                        boUpscale=False,
                                        interpolation=1)

    (H, W) = frame.shape[:2]
    frame_id += 1
    if frame_id > len(jpg_list):
        break

# check to see if we are currently tracking an object
    if initBB is not None:
        # grab the new bounding box coordinates of the object
        (success, box) = tracker.update(frame)
        # check to see if the tracking was a success
        if success:
            (x, y, w, h) = [int(v) for v in box]
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
示例#4
0
refPt_transformed = []
cropping = False

i1=0
i2=3

im1=jpg_list[i1]
im2=jpg_list[i2]

M=hcobj.Ms[im1,im2]

img1 = cv2.imread(im1,0)  #queryimage # left image
img2 = cv2.imread(im2,0)  #queryimage # left image        

image_max_dim=hcobj.image_max_dim
img1, scale = imRescaleMaxDim(img1, image_max_dim, boUpscale = False, interpolation = 1)
img2, scale = imRescaleMaxDim(img2, image_max_dim, boUpscale = False, interpolation = 1)

image_width=img1.shape[1]

#img2 = cv2.warpPerspective(img1, M, (img2.shape[1],img2.shape[0]))

M[0][2]*=scale
M[1][2]*=scale
M[2][0]*=scale
M[2][1]*=scale


def click_and_crop(event, x, y, flags, param):
	# grab references to the global variables
    global refPt, refPt_transformed, cropping, M, image_width