示例#1
0
def learn_synthetic(input_directory, output_directory, runs, sample_size, processes, time_out, learn_options: LearnOptions):
    commands = []

    db = get_synthetic_db(input_directory)
    for name in db.getall():
        entry = db.get(name)
        matching_samples = []
        for sample in entry["samples"]:
            if sample["sample_size"] == sample_size and len(matching_samples) < runs:
                matching_samples.append(sample)
        if len(matching_samples) != runs:
            raise RuntimeError("Insufficient samples available, prepare more samples first")

        for sample in matching_samples:
            detail_learn_options = learn_options.copy()
            detail_learn_options.domain = os.path.join(input_directory, "{}.density".format(name))
            detail_learn_options.data = os.path.join(input_directory, sample["samples_file"])
            detail_learn_options.labels = os.path.join(input_directory, sample["labels_file"])

            export_file = "{}{sep}{}.{}.{}.result" \
                .format( output_directory, name, sample_size, sample["seed"], sep=os.path.sep)
            log_file = "{}{sep}{}.{}.{}.log" \
                .format(output_directory, name, sample_size, sample["seed"], sep=os.path.sep)

            if not os.path.exists(os.path.dirname(export_file)):
                os.makedirs(os.path.dirname(export_file))

            commands.append("incal-track {} --export {} --log {}"
                            .format(detail_learn_options.print_arguments(), export_file, log_file))

    run_commands(commands, processes, time_out)
示例#2
0
def learn_benchmark(runs, sample_size, processes, time_out, learn_options: LearnOptions):
    # def filter1(entry):
    #     return "real_variables_count" in entry and entry["real_variables_count"] + entry["bool_variables_count"] <= 10
    #
    # count = 0
    # boolean = 0
    # for name, entry, density_filename in select_benchmark_files(filter1):
    #     if entry["bool_variables_count"] > 0:
    #         boolean += 1
    #     count += 1
    #
    # print("{} / {}".format(boolean, count))
    #
    # count = 0
    # boolean = 0
    # for name, entry, density_filename in select_benchmark_files(benchmark_filter):
    #     if entry["bool_variables_count"] > 0:
    #         boolean += 1
    #     count += 1
    #
    # print("{} / {}".format(boolean, count))

    def learn_filter(_e):
        return benchmark_filter(_e) and "samples" in _e

    count = 0
    problems_to_learn = []
    for name, entry, density_filename in select_benchmark_files(learn_filter):
        if len(entry["bounds"]) > 0:
            best_ratio = min(rel_ratio(t[1]) for t in entry["bounds"])
            if best_ratio <= 0.3:
                qualifying = [t for t in entry["bounds"] if rel_ratio(t[1]) <= 0.3 and abs(rel_ratio(t[1]) - best_ratio) <= best_ratio / 5]
                selected = sorted(qualifying, key=lambda x: get_bound_volume(x[0]))[0]
                print(name, "\n", rel_ratio(selected[1]), best_ratio, selected[0], entry["bool_variables_count"])
                count += 1
                selected_samples = [s for s in entry["samples"]
                                    if s["bounds"] == selected[0] and s["sample_size"] >= sample_size]
                if len(selected_samples) < runs:
                    raise RuntimeError("Insufficient number of data set available ({} of {})"
                                       .format(len(selected_samples), runs))
                elif len(selected_samples) > runs:
                    selected_samples = selected_samples[:runs]
                for selected_sample in selected_samples:
                    problems_to_learn.append((name, density_filename, selected_sample))

    commands = []
    for name, density_filename, selected_sample in problems_to_learn:
        detail_learn_options = learn_options.copy()
        detail_learn_options.domain = density_filename
        detail_learn_options.data = selected_sample["samples_filename"]
        detail_learn_options.labels = selected_sample["labels_filename"]
        export_file = "{}{sep}{}.{}.{}.result".format(get_benchmark_results_dir(), name, selected_sample["sample_size"],
                                                      selected_sample["seed"], sep=os.path.sep)
        log_file = "{}{sep}{}.{}.{}.log".format(get_benchmark_results_dir(), name, selected_sample["sample_size"],
                                                      selected_sample["seed"], sep=os.path.sep)
        if not os.path.exists(os.path.dirname(export_file)):
            os.makedirs(os.path.dirname(export_file))
        commands.append("incal-track {} --export {} --log {}"
                        .format(detail_learn_options.print_arguments(), export_file, log_file))

    run_commands(commands, processes, time_out)