def setUpClass(cls): """Set up model to test.""" cls = cls._prep_data(cls, reg=True) cls.mod = Incremental( StreamingEXTR(n_estimators_per_chunk=1, max_n_estimators=39, verbose=1)) # Set expected number of estimators # This should be set manually depending on data. cls.expected_n_estimators = 10 # Set helper values super().setUpClass()
def setUpClass(cls): """Set up model to test.""" cls.n_samples = 1000 cls.x, cls.y = sklearn.datasets.make_regression(n_samples=int(2e4), random_state=0, n_features=400) cls.mod = StreamingEXTR(n_estimators_per_chunk=1, max_n_estimators=39) # Set expected number of estimators cls.expected_n_estimators = 39 # Set helper values super().setUpClass()
def setUpClass(cls): """Set up model to test.""" cls = cls._prep_data(cls, reg=True) cls.mod = Incremental( StreamingEXTR(n_estimators_per_chunk=4, n_jobs=-1, max_n_estimators=np.inf, verbose=1)) # Set expected number of estimators cls.expected_n_estimators = 40 # Set helper values super().setUpClass()
def setUpClass(cls): """Set up model to test.""" cls.spf_n_fits = 10 cls.spf_sample_prop = 0.1 cls.dask_feeding = False cls.n_estimators_per_sample = 10 cls.mod = StreamingEXTR( verbose=1, n_estimators_per_chunk=cls.n_estimators_per_sample, max_n_estimators=np.inf, dask_feeding=cls.dask_feeding, spf_sample_prop=cls.spf_sample_prop, spf_n_fits=cls.spf_n_fits) super().setUpClass()
def bunch_of_examples(): from sklearn.datasets import make_blobs, make_regression x, y = make_regression(n_samples=int(2e5), random_state=0, n_features=40) srfr = StreamingRFR(n_estimators_per_chunk=5, spf_n_fits=10, dask_feeding=False, verbose=0, n_jobs=2) srfr.fit(x, y) # Fit 10 regressors for _ in range(10): x, y = make_regression(n_samples=int(2e5), random_state=0, n_features=40) srfr = StreamingRFR(n_estimators_per_chunk=5, max_n_estimators=100, verbose=0, n_jobs=5) chunk_size = int(2e3) for _ in range(20): sample_idx = np.random.randint(0, x.shape[0], chunk_size) srfr.partial_fit(x[sample_idx], y[sample_idx], classes=np.unique(y)) print(f"SRFR: {srfr.score(x, y)}") sext = StreamingEXTR(n_estimators_per_chunk=5, max_n_estimators=100, verbose=0, n_jobs=5) for _ in range(20): sample_idx = np.random.randint(0, x.shape[0], chunk_size) sext.partial_fit(x[sample_idx], y[sample_idx], classes=np.unique(y)) print(f"SEXTR: {sext.score(x, y)}") # Fit 10 classifiers for _ in range(10): x, y = make_blobs(n_samples=int(2e5), random_state=0, n_features=40, centers=2, cluster_std=100) srfc = StreamingRFC(n_estimators_per_chunk=5, max_n_estimators=100, verbose=0, n_jobs=5) chunk_size = int(2e3) for _ in range(20): sample_idx = np.random.randint(0, x.shape[0], chunk_size) srfc.partial_fit(x[sample_idx], y[sample_idx], classes=np.unique(y)) print(f"SRFC: {srfc.score(x, y)}") sext = StreamingEXTC(n_estimators_per_chunk=5, max_n_estimators=100, verbose=0, n_jobs=5) for _ in range(20): sample_idx = np.random.randint(0, x.shape[0], chunk_size) sext.partial_fit(x[sample_idx], y[sample_idx], classes=np.unique(y)) print(f"SEXTC: {sext.score(x, y)}")