def export_path_html(self, key): if len(self.selection)>0: explst = self.selection print 'export selection;', len(self.selection) else: explst = self.new_votes print 'export votes;', len(self.new_votes) query = [p for p in list(explst) if not p in self.trash] self.message('\n'.join([ 'Export assemblage of selected images. ({} imgs)'.format( len(query[:20])), '','This may take a while.'])) # FIXME: this is limited to 20 images??? path = index.chain(query=query[:20]) index.export_html(path, 'selection.html') self.redraw=True
D_op = np.load("var_p_one_30n_50_10.npy") # read OSI profiles Q_p = np.load("var_p_Q_30n.npy").item().get(0) # read accuracy count = 0 chain1 = [] chain2 = [] chain3 = [] ban1 = [] ban2 = [] ban3 = [] for i in range(var_p): # get statistics from profiles for j in range(rp): print("processing #", count, "/", var_p * rp * 2) count = count + 1 d = D_bp.item().get(i * rp + j) r.append([p[i], "IBRD", index.del_r(d, n)]) chain = index.chain(d, n) lon.append([p[i], "IBRD", chain[0]]) short.append([p[i], "IBRD", chain[1]]) avglen.append([p[i], "IBRD", chain[2]]) for k in range(n): ban.append(cal_banzhaf(d, n, k, beta)) ban_s = index.banzhaf(ban, n) ma.append([p[i], "IBRD", ban_s[0]]) mi.append([p[i], "IBRD", ban_s[1]]) avgban.append([p[i], "IBRD", ban_s[2]]) gini.append([p[i], "IBRD", index.gini(ban, n)]) acu.append([p[i], "IBRD", index.average_accuracy(d, Q_p, n)]) ban = [] for j in range(rp): print("processing #", count, "/", var_p * rp * 2) count = count + 1
chain3 = [] ban1 = [] ban2 = [] ban3 = [] concon = 0 # count non-converging cases for i in range(len(A)): # get statistics from profiles name1 = "q in [0.0, 1.0]" for j in range(rp): print("processing #", count, "/", len(A) * rp * 2) count = count + 1 d = D_bb.item().get(i * rp + j) if 30 in d: concon = concon + 1 continue r.append([A[i], name1, index.del_r(d, n)]) chain = index.chain(d, n) lon.append([A[i], name1, chain[0]]) short.append([A[i], name1, chain[1]]) avglen.append([A[i], name1, chain[2]]) for k in range(n): ban.append(cal_banzhaf(d, n, k, beta)) # ban.append(random.uniform(0, 1)) ban_s = index.banzhaf(ban, n) ma.append([A[i], name1, ban_s[0]]) mi.append([A[i], name1, ban_s[1]]) avgban.append([A[i], name1, ban_s[2]]) gini.append([A[i], name1, index.gini(ban, n)]) acu.append([A[i], name1, index.average_accuracy(d, Q_mis, n)]) ban = [] con.append([A[i], 1, 50 - concon]) concon = 0
import index from random import randrange as rnd index.load() for n in range(6): stars = sorted(index.pictures(), key=lambda p:p.rating, reverse=True)[:5+n*2] query = [] print 'Checkpoints:' for i in range(3+n): p = stars[rnd(len(stars))] query.append(p) stars.remove(p) print '{}. {}'.format(i+1, p.name) path = index.chain(query=query) print '\nPath:' print ' > '.join([p.name for p in path]) reference = [p for p in query if p in path] index.export_html(reference+[None]+path, 'path{}.html'.format(n))