示例#1
0
    def get_ind_and_signals(self, prices):
        short_MA = ind.moving_average(prices['close'], self.short_period)
        long_MA = ind.moving_average(prices['close'], self.long_period)
        signal = long_MA.copy()
        signal[short_MA > long_MA] = 1
        signal[short_MA < long_MA] = -1
        signal[short_MA == long_MA] = 0
        signal[long_MA.isnull()] = 0

        indicator = pd.DataFrame({'Timestamp': signal.index, 'short_MA': short_MA, 'long_MA': long_MA})
        indicator = indicator.set_index('Timestamp')
        indicator = indicator.tz_localize(pytz.timezone('UTC'))

        return indicator, signal
示例#2
0
def update(path):
    df = pd.read_csv(path)

    df = indicators.moving_average(df, 15)
    df = indicators.exponential_moving_average(df, 30)
    df = indicators.relative_strength_index(df, 14)
    df = indicators.macd(df, 12, 26)

    # print(df)
    df = df.astype(float)

    f = lambda x: mdates.date2num(datetime.datetime.fromtimestamp(x))
    df['Date'] = df['Date'].apply(f)

    # print(df['Date'])
    return df
示例#3
0
def main(instrument, periods, granularity, outfile, daily_alignment):

    print(f'Periods        : {periods}')
    print(f'Instrument     : {instrument}')
    print(f'Granularity    : {granularity}')
    print(f'daily alignment: {daily_alignment}')
    print(f'Outfile        : {outfile}')

    if instrument.upper() not in INSTRUMENTS:
        raise Exception(f'Invalid instrument {instrument}')

    if granularity.upper() not in GRANULARITY:
        raise Exception(f'Invalid granularity {granularity}')

    instrument = instrument.upper()
    granularity = granularity.upper()

    debug = True
    if not debug:
        pd.set_option('display.max_columns', 50)
        # pd.set_option('display.max_rows', 500000)
        pd.set_option('display.width', 1000)

    stock = get_oanda_api(
        [instrument],
        granularity=granularity,
        count=periods,
        daily_alignment=daily_alignment,
    )

    nsize = len(stock[instrument]['Close'])

    # Calculate MACD
    stock[instrument] = stock[instrument].join(
        macd(stock[instrument]['Close'])
    )

    # Calculate RSI for n = 14
    stock[instrument] = stock[instrument].join(
        rsi(stock[instrument]['Close'])
    )
    # Calculate Profile and Loss
    stock[instrument] = stock[instrument].join(
        pnl(stock[instrument]['Close'])
    )
    # Calculate MACD Percentile
    stock[instrument] = stock[instrument].join(
        macd_percentile(stock[instrument]['MACD'])
    )
    # Calculate RSI Percentile
    stock[instrument] = stock[instrument].join(
        rsi_percentile(stock[instrument]['RSI'])
    )
    # Calculate  Profile and Loss Percentile
    stock[instrument] = stock[instrument].join(
        pnl_percentile(stock[instrument]['Profit/Loss'])
    )

    # Calculate Divergence factor 1 and 2
    stock[instrument] = stock[instrument].join(
        pd.Series(
            (
                stock[instrument]['MACD Percentile'] + 0.1 -
                stock[instrument]['RSI Percentile']
            ) / 2.0,
            name='Divergence Factor 1'
        )
    )
    stock[instrument] = stock[instrument].join(
        pd.Series(
            stock[instrument]['Divergence Factor 1'] -
            stock[instrument]['PNL Percentile'],
            name='Divergence Factor 2'
        )
    )

    # Calculate Divergence factor 3
    n = 19
    for i in range(nsize):
        stock[instrument].loc[i: nsize, 'Macd_20'] = (
            stock[instrument]['MACD'].iloc[i] -
            stock[instrument]['MACD'].iloc[i - n]
        )
        stock[instrument].loc[i: nsize, 'Prc_20'] = (
            (stock[instrument]['Close'].iloc[i] -
                stock[instrument]['Close'].iloc[i - n])
        ) / stock[instrument]['Close'].iloc[i - n]
        stock[instrument].loc[i: nsize, 'Divergence Factor 3'] = (
            stock[instrument]['Macd_20'].iloc[i] /
            stock[instrument]['Close'].iloc[i]
        ) - stock[instrument]['Prc_20'].iloc[i]

    stock[instrument] = stock[instrument].join(
        rsi(stock[instrument]['Close'], 20, name='RSI_20')
    )

    # Calculate the momentum factors
    stock[instrument] = stock[instrument].join(
        pnl_n(stock[instrument]['Close'], 10)
    )
    stock[instrument] = stock[instrument].join(
        pnl_n(stock[instrument]['Close'], 30)
    )

    stock[instrument]['Close_fwd'] = stock[instrument]['Close'].shift(-2)
    stock[instrument].loc[-1: nsize, 'Close_fwd'] = stock[instrument]['Close'].iloc[-1]
    stock[instrument].loc[-2: nsize, 'Close_fwd'] = stock[instrument]['Close'].iloc[-2]

    stock[instrument] = stock[instrument].join(
        macd(
            stock[instrument]['Close_fwd'],
            name='MACD_fwd'
        )
    )
    n = 19
    stock[instrument] = stock[instrument].join(
        pd.Series(
            stock[instrument]['MACD_fwd'].diff(n) - stock[instrument]['MACD'],
            name='M_MACD_CHANGE'
        )
    )

    stock[instrument] = stock[instrument].join(
        rsi(stock[instrument]['Close_fwd'], n=20, name='RSI_20_fwd')
    )
    stock[instrument] = stock[instrument].join(
        pd.Series(
            stock[instrument]['RSI_20_fwd'] - stock[instrument]['RSI_20'],
            name='M_RSI_CHANGE'
        )
    )

    # Calculate the ADX, PDI & MDI
    _adx, _pdi, _mdi = adx(stock[instrument])

    stock[instrument] = stock[instrument].join(_adx)
    stock[instrument] = stock[instrument].join(_pdi)
    stock[instrument] = stock[instrument].join(_mdi)

    # Calculate the Moving Averages: 5, 10, 20, 50, 100
    for period in [5, 10, 20, 50, 100]:
        stock[instrument] = stock[instrument].join(
            moving_average(
                stock[instrument]['Close'],
                period,
                name=f'{period}MA'
            )
        )

    # Calculate the Williams PCTR
    stock[instrument] = stock[instrument].join(
        williams(stock[instrument])
    )

    # Calculate the Minmax Range
    n = 17
    for i in range(nsize):
        maxval = stock[instrument]['High'].iloc[i - n: i].max()
        minval = stock[instrument]['Low'].iloc[i - n: i].min()
        rng = abs(maxval) - abs(minval)
        # where is the last price in the range of minumimn to maximum
        pnow = stock[instrument]['Close'].iloc[i - n: i]
        if len(pnow.iloc[-1: i].values) > 0:
            whereinrng = (
                (pnow.iloc[-1: i].values[0] - abs(minval)) / rng
            ) * 100.0
            stock[instrument].loc[i: nsize, 'MinMaxPosition'] = whereinrng
            stock[instrument].loc[i: nsize, 'High_Price(14)'] = maxval
            stock[instrument].loc[i: nsize, 'Low_Price(14)'] = minval

    headers = [
        'Close',
        'adx',
        'pdi',
        'mdi',
        'MACD',
        'RSI',
        'Divergence Factor 1',
        'Divergence Factor 2',
        'Divergence Factor 3',
    ]
    stock[instrument].to_csv(
        outfile,
        columns=headers,
        mode='w',
        sep=',',
        date_format='%d-%b-%Y %r',
    )
示例#4
0
def Function_for_file_generation():
    global specific_insts
    global ggpath
    ggpath = gpath
    debug = False
    if not debug:
        pd.set_option('display.max_columns', 50)
        pd.set_option('display.width', 1000)
    # user_input=input("Do You Want Select Instrument Manually:y or n")
    # man_inst_names=None
    # if user_input=="y":
    #     man_inst_names=input("Enter Instrument names Separated by Space:")
    #     man_inst_names = man_inst_names.split()

    instruments = INSTRUMENTS
    # # instruments = ['AUD_CAD',]
    # # instruments = ['AUD_CHF',]
    # instruments = ['AUD_CHF', 'AUD_CAD']
    # instruments = ['AUD_CAD',]
    #data = get_file_data()
    stock = get_oanda_api(instruments, granularity='D')

    # print (stock['AUD_CAD'])

    # stock = get_ig_api(instruments)
    # print (stock['AUD_CAD'])

    # instruments = data['Close'].columns.values
    # # Initialize all assign all instrument data to dataframes
    # stock = {}
    # for instrument in instruments:
    #     values = {}
    #     for key in COLUMNS:
    #         values[key] = data.get(key, {}).get(instrument)
    #     values['Date'] = data.get('Date').iloc[:len(values[key]), 0]
    #     stock[instrument] = pd.DataFrame(values, columns=COLUMNS)

    # print(stock[SELECTED_INSTRUMENT])
    # return
    # Calculate the MACD, RSI and Profit and Loss for all instrument paid
    # Also, Calculate the MACD, RSI and Profit and Loss percentile for all
    # instruments
    instruments_list = []
    CCI_list = []
    dic_for_all_cci = {}

    for instrument in instruments:

        nsize = len(stock[instrument]['Close'])

        # Calculate MACD
        stock[instrument] = stock[instrument].join(
            macd(stock[instrument]['Close']))

        # Calculate RSI for n = 14
        stock[instrument] = stock[instrument].join(
            rsi(stock[instrument]['Close']))

        #changeInPrice
        stock[instrument]["Change In Price"] = change_in_price(
            stock[instrument]["Close"].values)

        # Calculate Profile and Loss
        stock[instrument] = stock[instrument].join(
            pnl(stock[instrument]['Close']))
        # Calculate MACD Percentile
        stock[instrument] = stock[instrument].join(
            macd_percentile(stock[instrument]['MACD']))
        # Calculate RSI Percentile
        stock[instrument] = stock[instrument].join(
            rsi_percentile(stock[instrument]['RSI']))
        # Calculate  Profile and Loss Percentile
        stock[instrument] = stock[instrument].join(
            pnl_percentile(stock[instrument]['Profit/Loss']))

        #Calculate CCI
        high = stock[instrument]["High"].values
        close = stock[instrument]["Close"].values
        low = stock[instrument]["Low"].values
        #create instrument dataframe
        ccis = talib.CCI(high, low, close, timeperiod=14)
        #ccis=list(ccis)
        instruments_list.append(instrument)
        CCI_list.append(ccis[-1])
        dic_for_all_cci[instrument] = ccis
        stock[instrument]["CCI"] = ccis

        # Calculate Divergence factor 1 and 2
        stock[instrument] = stock[instrument].join(
            pd.Series((stock[instrument]['MACD Percentile'] + 0.1 -
                       stock[instrument]['RSI Percentile']) / 2.0,
                      name='Divergence Factor 1'))
        stock[instrument] = stock[instrument].join(
            pd.Series(stock[instrument]['Divergence Factor 1'] -
                      stock[instrument]['PNL Percentile'],
                      name='Divergence Factor 2'))

        # Calculate Divergence factor 3
        n = 19
        for i in range(nsize):
            stock[instrument].loc[i:nsize, 'Macd_20'] = (
                stock[instrument]['MACD'].iloc[i] -
                stock[instrument]['MACD'].iloc[i - n])
            stock[instrument].loc[i:nsize, 'Prc_20'] = (
                (stock[instrument]['Close'].iloc[i] -
                 stock[instrument]['Close'].iloc[i - n])
            ) / stock[instrument]['Close'].iloc[i - n]
            stock[instrument].loc[i:nsize, 'Divergence Factor 3'] = (
                stock[instrument]['Macd_20'].iloc[i] /
                stock[instrument]['Close'].iloc[i]
            ) - stock[instrument]['Prc_20'].iloc[i]

        stock[instrument] = stock[instrument].join(
            rsi(stock[instrument]['Close'], 20, name='RSI_20'))

        # Calculate the momentum factors
        stock[instrument] = stock[instrument].join(
            pnl_n(stock[instrument]['Close'], 10))
        stock[instrument] = stock[instrument].join(
            pnl_n(stock[instrument]['Close'], 30))

        stock[instrument]['Close_fwd'] = stock[instrument]['Close'].shift(-2)
        stock[instrument].loc[
            -1:nsize, 'Close_fwd'] = stock[instrument]['Close'].iloc[-1]
        stock[instrument].loc[
            -2:nsize, 'Close_fwd'] = stock[instrument]['Close'].iloc[-2]

        stock[instrument] = stock[instrument].join(
            macd(stock[instrument]['Close_fwd'], name='MACD_fwd'))
        n = 19
        stock[instrument] = stock[instrument].join(
            pd.Series(stock[instrument]['MACD_fwd'].diff(n) -
                      stock[instrument]['MACD'],
                      name='M_MACD_CHANGE'))

        stock[instrument] = stock[instrument].join(
            rsi(stock[instrument]['Close_fwd'], n=20, name='RSI_20_fwd'))
        stock[instrument] = stock[instrument].join(
            pd.Series(stock[instrument]['RSI_20_fwd'] -
                      stock[instrument]['RSI_20'],
                      name='M_RSI_CHANGE'))

        # Calculate the ADX, PDI & MDI
        _adx, _pdi, _mdi = adx(stock[instrument])

        stock[instrument] = stock[instrument].join(_adx)
        stock[instrument] = stock[instrument].join(_pdi)
        stock[instrument] = stock[instrument].join(_mdi)

        # Calculate the Moving Averages: 5, 10, 20, 50, 100
        for period in [5, 10, 20, 50, 100]:
            stock[instrument] = stock[instrument].join(
                moving_average(stock[instrument]['Close'],
                               period,
                               name=f'{period}MA'))

        # Calculate the Williams PCTR
        stock[instrument] = stock[instrument].join(williams(stock[instrument]))

        # Calculate the Minmax Range
        n = 17
        for i in range(nsize):
            maxval = stock[instrument]['High'].iloc[i - n:i].max()
            minval = stock[instrument]['Low'].iloc[i - n:i].min()
            rng = abs(maxval) - abs(minval)
            # where is the last price in the range of minumimn to maximum
            pnow = stock[instrument]['Close'].iloc[i - n:i]
            if len(pnow.iloc[-1:i].values) > 0:
                whereinrng = (
                    (pnow.iloc[-1:i].values[0] - abs(minval)) / rng) * 100.0
                stock[instrument].loc[i:nsize, 'MinMaxPosition'] = whereinrng
                stock[instrument].loc[i:nsize, 'High_Price(14)'] = maxval
                stock[instrument].loc[i:nsize, 'Low_Price(14)'] = minval

        stock[instrument]['Divergence factor Avg'] = (
            stock[instrument]['Divergence Factor 1'] +
            stock[instrument]['Divergence Factor 2'] +
            stock[instrument]['Divergence Factor 3']) / 3.0

        stock[instrument]['Momentum Avg'] = (
            stock[instrument]['M_MACD_CHANGE'] +
            stock[instrument]['M_RSI_CHANGE'] +
            stock[instrument]['Profit/Loss_10'] +
            stock[instrument]['Profit/Loss_30']) / 4.0

        df_instrument = pd.DataFrame()
        df_instrument["Open"] = stock[instrument]["Open"]
        df_instrument["High"] = stock[instrument]['High']
        df_instrument["Low"] = stock[instrument]['Low']
        df_instrument["Close"] = stock[instrument]['Close']
        df_instrument["Volume"] = stock[instrument]['Volume']
        df_instrument["Price"] = stock[instrument]['Close']
        df_instrument["Change In Price"] = change_in_price(
            stock[instrument]['Close'].values)
        df_instrument["CCI"] = stock[instrument]['CCI']
        df_instrument["PNL Percentile"] = stock[instrument]['PNL Percentile']
        df_instrument["Divergence Factor 1"] = stock[instrument][
            'Divergence Factor 1']
        df_instrument["Divergence Factor 2"] = stock[instrument][
            'Divergence Factor 2']
        df_instrument["Divergence Factor 3"] = stock[instrument][
            'Divergence Factor 3']

        df_instrument["Momentum Factor 1"] = stock[instrument]["M_MACD_CHANGE"]
        df_instrument["Momentum Factor 2"] = stock[instrument]['M_RSI_CHANGE']
        df_instrument["Momentum Factor 3"] = stock[instrument][
            'Profit/Loss_10']
        df_instrument["Momentum Factor 4"] = stock[instrument][
            'Profit/Loss_30']

        df_instrument["RSI"] = stock[instrument]["RSI"]
        df_instrument["MACD"] = stock[instrument]["MACD"]
        df_instrument["WPCTR"] = stock[instrument]["Williams PCTR"]
        df_instrument["pdi"] = stock[instrument]["pdi"]
        df_instrument["mdi"] = stock[instrument]["mdi"]
        df_instrument["adx"] = stock[instrument]["adx"]
        #df_instrument= df_instrument[pd.notnull(df_instrument['CCI'])]
        df_instrument = df_instrument.dropna(how="any")
        df_instrument["CCI Percentile"] = cci_percentile(df_instrument["CCI"])
        df_instrument["Divergence Factor 4"] = df_instrument[
            "CCI Percentile"] - df_instrument["PNL Percentile"]
        df_instrument['Divergence Factor 1 Rank'] = rank_formulation(
            df_instrument['Divergence Factor 1'].values)
        df_instrument['Divergence Factor 2 Rank'] = rank_formulation(
            df_instrument['Divergence Factor 2'].values)
        df_instrument['Divergence Factor 3 Rank'] = rank_formulation(
            df_instrument['Divergence Factor 3'].values)
        df_instrument['Divergence Factor 4 Rank'] = rank_formulation(
            df_instrument['Divergence Factor 4'].values)
        df_instrument['DF Avg Rank'] = (
            df_instrument['Divergence Factor 1 Rank'] +
            df_instrument['Divergence Factor 2 Rank'] +
            df_instrument['Divergence Factor 3 Rank'] +
            df_instrument['Divergence Factor 4 Rank']) / 4.0

        df_instrument['Momentum Factor 1 Rank'] = rank_formulation(
            df_instrument['Momentum Factor 1'].values)
        df_instrument['Momentum Factor 2 Rank'] = rank_formulation(
            df_instrument['Momentum Factor 2'].values)
        df_instrument['Momentum Factor 3 Rank'] = rank_formulation(
            df_instrument['Momentum Factor 3'].values)
        df_instrument['Momentum Factor 4 Rank'] = rank_formulation(
            df_instrument['Momentum Factor 4'].values)
        df_instrument['MF Avg Rank'] = (
            df_instrument['Momentum Factor 1 Rank'] +
            df_instrument['Momentum Factor 2 Rank'] +
            df_instrument['Momentum Factor 3 Rank'] +
            df_instrument['Momentum Factor 4 Rank']) / 4.0

        df_instrument["% Rank of DF Avgs"] = rank_formulation(
            df_instrument['DF Avg Rank'].values)
        df_instrument["% Rank of MF Avgs"] = rank_formulation(
            df_instrument['MF Avg Rank'].values)
        df_instrument = df_instrument[[
            'Open',
            'High',
            'Low',
            'Close',
            'Volume',
            'Price',
            'Change In Price',
            'Divergence Factor 1',
            'Divergence Factor 2',
            'Divergence Factor 3',
            'Divergence Factor 4',
            'DF Avg Rank',
            '% Rank of DF Avgs',
            'Divergence Factor 1 Rank',
            'Divergence Factor 2 Rank',
            'Divergence Factor 3 Rank',
            'Divergence Factor 4 Rank',
            'Momentum Factor 1',
            'Momentum Factor 2',
            'Momentum Factor 3',
            'Momentum Factor 4',
            'Momentum Factor 1 Rank',
            'Momentum Factor 2 Rank',
            'Momentum Factor 3 Rank',
            'Momentum Factor 4 Rank',
            'MF Avg Rank',
            '% Rank of MF Avgs',
            'RSI',
            'MACD',
            'WPCTR',
            'CCI',
            'CCI Percentile',
            'PNL Percentile',
            'pdi',
            'mdi',
            'adx',
        ]]
        df_instrument.to_csv(gpath + "all_folders/" + instrument + ".csv")

    ccis_df = pd.DataFrame(dic_for_all_cci)
    cci_percentile_list = []
    dic = {"Instrument": instruments_list, "CCI": CCI_list}
    new_df = pd.DataFrame(dic)
    cci_percentile_list = cci_percentile(new_df["CCI"]).to_list()

    #sys.exit()
    # calculate the aggregrate for each oeruod
    # calculate the Divergence_Macd_Prc_Rank

    for nrow in range(nsize):
        row = [
            stock[instrument]['Divergence Factor 3'].iloc[nrow]
            for instrument in instruments
        ]
        series = pd.Series(row).rank() / len(row)
        for i, instrument in enumerate(instruments):
            stock[instrument].loc[nrow:nsize,
                                  'Divergence_Macd_Prc_Rank'] = series.iloc[i]

    # calculate the Divergence and Momentum average rank
    indices = [instrument for instrument in instruments]
    columns = [
        'Price',
        "Change In Price",
        'Divergence Factor 1',
        'Divergence Factor 2',
        'Divergence Factor 3',
        'Divergence Factor 1 Rank',
        'Divergence Factor 2 Rank',
        'Divergence Factor 3 Rank',
        'M_MACD_CHANGE',
        'M_RSI_CHANGE',
        'Profit/Loss_10',
        'Profit/Loss_30',
        'M_MACD_CHANGE Rank',
        'M_RSI_CHANGE Rank',
        'Profit/Loss_10 Rank',
        'Profit/Loss_30 Rank',
        'MF Avg Rank',
        '% Rank of MF Avgs',
        'MinMaxPosition',
        'RSI',
        'WPCTR',
        'pdi',
        'mdi',
        'adx',
        'High_Price(14)',
        'Low_Price(14)',
        '5MA',
        '10MA',
        '20MA',
        '50MA',
        '100MA',
        "MACD",
        'PNL Percentile',
        "DF Avg Rank",
        "% Rank of DF Avgs",
    ]

    periods = []
    for i in range(nsize):

        period = []

        for instrument in instruments:

            period.append([
                stock[instrument]['Close'].iloc[i],
                stock[instrument]["Change In Price"].iloc[i],
                stock[instrument]['Divergence Factor 1'].iloc[i],
                stock[instrument]['Divergence Factor 2'].iloc[i],
                stock[instrument]['Divergence Factor 3'].iloc[i],
                None,
                None,
                None,
                stock[instrument]['M_MACD_CHANGE'].iloc[i],
                stock[instrument]['M_RSI_CHANGE'].iloc[i],
                stock[instrument]['Profit/Loss_10'].iloc[i],
                stock[instrument]['Profit/Loss_30'].iloc[i],
                None,
                None,
                None,
                None,
                None,
                None,
                stock[instrument]['MinMaxPosition'].iloc[i],
                stock[instrument]['RSI'].iloc[i],
                stock[instrument]['Williams PCTR'].iloc[i],
                stock[instrument]['pdi'].iloc[i],
                stock[instrument]['mdi'].iloc[i],
                stock[instrument]['adx'].iloc[i],
                stock[instrument]['High_Price(14)'].iloc[i],
                stock[instrument]['Low_Price(14)'].iloc[i],
                stock[instrument]['5MA'].iloc[i],
                stock[instrument]['10MA'].iloc[i],
                stock[instrument]['20MA'].iloc[i],
                stock[instrument]['50MA'].iloc[i],
                stock[instrument]['100MA'].iloc[i],
                stock[instrument]["MACD"].iloc[i],
                stock[instrument]['PNL Percentile'].iloc[i],
                None,
                None,
            ])
        df = pd.DataFrame(data=period, index=indices, columns=columns)
        df['Divergence Factor 1 Rank'] = rank_formulation(
            df["Divergence Factor 1"].values)
        df['Divergence Factor 2 Rank'] = rank_formulation(
            df["Divergence Factor 2"].values)
        df['Divergence Factor 3 Rank'] = rank_formulation(
            df["Divergence Factor 3"].values)

        df['Momentum Factor 1 Rank'] = rank_formulation(
            df['M_MACD_CHANGE'].values)
        df['Momentum Factor 2 Rank'] = rank_formulation(
            df['M_RSI_CHANGE'].values)
        df['Momentum Factor 3 Rank'] = rank_formulation(
            df['Profit/Loss_10'].values)
        df['Momentum Factor 4 Rank'] = rank_formulation(
            df['Profit/Loss_30'].values)

        df['MF Avg Rank'] = (
            df['Momentum Factor 1 Rank'] + df['Momentum Factor 1 Rank'] +
            df['Momentum Factor 1 Rank'] + df['Momentum Factor 1 Rank']) / 4.0
        df['% Rank of MF Avgs'] = rank_formulation(df['MF Avg Rank'].values)

        #df.to_excel("target_data.xlsx")
        periods.append(df)
    pnl_percentile_nparaay = np.array(df["PNL Percentile"].values)
    cci_percentile_nparray = cci_percentile_list
    divergent_factor_4 = cci_percentile_nparray - pnl_percentile_nparaay
    df["CCI"] = CCI_list
    df["CCI Percentile"] = cci_percentile_list
    df["Divergence Factor 4"] = divergent_factor_4
    df['Divergence Factor 4 Rank'] = rank_formulation(
        df['Divergence Factor 1'].values)
    df['DF Avg Rank'] = (
        df['Divergence Factor 1 Rank'] + df['Divergence Factor 2 Rank'] +
        df['Divergence Factor 3 Rank'] + df['Divergence Factor 4 Rank']) / 4.0
    df["% Rank of DF Avgs"] = rank_formulation(df['DF Avg Rank'].values)
    df = df[[
        'Price',
        'Change In Price',
        'Divergence Factor 1',
        'Divergence Factor 2',
        'Divergence Factor 3',
        'Divergence Factor 4',
        'Divergence Factor 1 Rank',
        'Divergence Factor 2 Rank',
        'Divergence Factor 3 Rank',
        'Divergence Factor 4 Rank',
        'DF Avg Rank',
        '% Rank of DF Avgs',  #'Momentum Factor 1','Momentum Factor 2','Momentum Factor 3','Momentum Factor 4',
        #'Momentum Factor 1 Rank','Momentum Factor 2 Rank','Momentum Factor 3 Rank','Momentum Factor 4 Rank','MF Avg Rank', '% Rank of MF Avgs',
        'M_MACD_CHANGE',
        'M_RSI_CHANGE',
        'Profit/Loss_10',
        'Profit/Loss_30',
        'M_MACD_CHANGE Rank',
        'M_RSI_CHANGE Rank',
        'Profit/Loss_10 Rank',
        'Profit/Loss_30 Rank',
        'MF Avg Rank',
        '% Rank of MF Avgs',
        'MinMaxPosition',
        'RSI',
        'MACD',
        'WPCTR',
        'CCI',
        'CCI Percentile',
        'PNL Percentile',
        'pdi',
        'mdi',
        'adx',
        'High_Price(14)',
        'Low_Price(14)',
        '5MA',
        '10MA',
        '20MA',
        '50MA',
        '100MA'
    ]]
    df.to_excel(gpath + "all_folders/" + "target_data.xlsx")
    df.sort_values(by="% Rank of DF Avgs", inplace=True)
    df.to_excel(gpath + "all_folders/" + "ordered_target_data.xlsx")

    top5, last5 = instrument_selection_rules(df)
    specific_insts = None
    specific_insts = top5 + last5
    dflist1 = []
    if specific_insts is not None:
        '''dflist1=Graph_Plots_For_Individual_Instrument(specific_insts,False)
        dflist1.to_csv(gpath+"all_folders"+"/"+"ins_ind_flag.csv")
        dfDiverge=dflist.copy()  
        dfDiverge=dfDiverge.loc[dfDiverge['imp_var'].isin(['Divergence Factor 1','Divergence Factor 2','Divergence Factor 3','Divergence Factor 4'])]
        dfDiverge.reset_index(drop=True,inplace=True)
        dfDiverge.to_csv(gpath+"all_folders"+"/"+"selected_ins_ind_flag.csv")'''
        for rule_instrument in specific_insts:
            data = pd.read_csv(gpath + "all_folders/" + rule_instrument +
                               ".csv",
                               index_col="Date")
            data.to_csv(gpath + "rule_select_inst/" + rule_instrument + ".csv")
示例#5
0
    def plot_graph(self):
        from_ = self.date_picker.date()
        from_ = datetime.date(day=from_.day(), month=from_.month(),
                              year=from_.year())
        to = from_ + datetime.timedelta(days=1)
        from_ = from_.strftime("%Y%m%d")
        to = to.strftime("%Y%m%d")
        query = self.db.trades.find({'code': self.code, 'datetime': {'$gte':
                                     from_, '$lt': to}}).sort('datetime')
        trades = [(datetime.datetime.strptime(trade['datetime'], "%Y%m%d%H%M%S"),
                  float(trade['open'])) for trade in query]

        if len(trades) < 2:
            self.clear()
            self.axes1.plot()
            self.axes2.plot()
            self.axes3.plot()
            self.redraw()
            return

        heads = ['DateTime', 'Open',]
        r = indicators.get_records(heads, trades)

        self.clear()

        for ax in self.axes1, self.axes2, self.axes3:
            if ax != self.axes3:
                for label in ax.get_xticklabels():
                    label.set_visible(False)
            else:
                for label in ax.get_xticklabels():
                    label.set_rotation(40)
                    label.set_horizontalalignment('right')

            ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))

        try:
            rsi = indicators.relative_strength(r.open)

            fillcolor = 'darkgoldenrod'
            textsize = 9

            self.axes1.plot(r.datetime, rsi, fillcolor)
            self.axes1.fill_between(r.datetime, rsi, 70, where=(rsi>=70), facecolor=fillcolor, edgecolor=fillcolor)
            self.axes1.fill_between(r.datetime, rsi, 30, where=(rsi<=30), facecolor=fillcolor, edgecolor=fillcolor)
        except:
            self.axes1.plot(r.datetime, r.open, color='black', label='Open')

        self.axes1.axhline(70, color=fillcolor)
        self.axes1.axhline(30, color=fillcolor)
        self.axes1.text(0.6, 0.9, '>70 = overbought', va='top',
                        transform=self.axes1.transAxes, fontsize=textsize)
        self.axes1.text(0.6, 0.1, '<30 = oversold', transform=self.axes1.transAxes, fontsize=textsize)
        self.axes1.set_ylim(0, 100)
        self.axes1.set_yticks([30,70])
        self.axes1.text(0.025, 0.95, 'RSI (14)', va='top',
                        transform=self.axes1.transAxes, fontsize=textsize)

        try:
            ma = indicators.moving_average(r.open, 10, type_='simple')
            self.axes2.plot(r.datetime, ma, color='blue', lw=2, label='MA (10)')
        except:
            pass

        try:
            ma = indicators.moving_average(r.open, 20, type_='simple')
            self.axes2.plot(r.datetime, ma, color='red', lw=2, label='MA (20)')
        except:
            pass

        self.axes2.plot(r.datetime, r.open, color='black', label='Open')

        props = font_manager.FontProperties(size=8)
        self.axes2.legend(loc='best', shadow=True, fancybox=True, prop=props)

        fillcolor = 'darkslategrey'
        nslow, nfast, nema = 26, 12, 9

        try:
            emaslow, emafast, macd = indicators.moving_average_convergence(r.open, nslow=nslow, nfast=nfast)
            ema9 = indicators.moving_average(macd, nema, type_='exponential')

            self.axes3.plot(r.datetime, macd, color='black', lw=2)
            self.axes3.plot(r.datetime, ema9, color='blue', lw=1)
            self.axes3.fill_between(r.datetime, macd-ema9, 0, alpha=0.5, facecolor=fillcolor, edgecolor=fillcolor)
        except:
            self.axes3.plot(r.datetime, r.open, color='black', label='Open')

        self.axes3.text(0.025, 0.95, 'MACD (%d, %d, %d)'%(nfast, nslow, nema), va='top',
                 transform=self.axes3.transAxes, fontsize=textsize)


        self.redraw()
示例#6
0
 def get_mov_avg(close_price):
     mov_avg_20 = indicators.moving_average(close_price, window=20)
     mov_avg_60 = indicators.moving_average(close_price, window=60)
     mov_avg_100 = indicators.moving_average(close_price, window=100)
     return mov_avg_20, mov_avg_60, mov_avg_100