def test_act_af_to_phos(): act_st = Activation(Agent('A', activity=ActivityCondition('kinase', True)), Agent('B')) af_st = ActiveForm( Agent('B', mods=[ModCondition('phosphorylation', None, None, True)]), 'activity', True) ml = MechLinker([act_st, af_st]) linked_stmts = ml.infer_modifications(ml.statements) assert len(linked_stmts) == 1
def test_act_af_to_phos(): act_st = Activation(Agent('A', activity=ActivityCondition('kinase', True)), Agent('B')) af_st = ActiveForm(Agent('B', mods=[ModCondition('phosphorylation', None, None, True)]), 'activity', True) ml = MechLinker([act_st, af_st]) linked_stmts = ml.infer_modifications(ml.statements) assert len(linked_stmts) == 1
def run_assembly(stmts, folder, pmcid, background_assertions=None): '''Run assembly on a list of statements, for a given PMCID.''' # Folder for index card output (scored submission) indexcard_prefix = folder + '/index_cards/' + pmcid # Folder for other outputs (for analysis, debugging) otherout_prefix = folder + '/other_outputs/' + pmcid # Do grounding mapping here # Load the TRIPS-specific grounding map and add to the default # (REACH-oriented) grounding map: trips_gm = load_grounding_map('trips_grounding_map.csv') default_grounding_map.update(trips_gm) gm = GroundingMapper(default_grounding_map) mapped_agent_stmts = gm.map_agents(stmts) renamed_agent_stmts = gm.rename_agents(mapped_agent_stmts) # Filter for grounding grounded_stmts = [] for st in renamed_agent_stmts: if all([is_protein_or_chemical(a) for a in st.agent_list()]): grounded_stmts.append(st) # Instantiate the Preassembler pa = Preassembler(bio_ontology) pa.add_statements(grounded_stmts) print('== %s ====================' % pmcid) print('%d statements collected in total.' % len(pa.stmts)) # Combine duplicates unique_stmts = pa.combine_duplicates() print('%d statements after combining duplicates.' % len(unique_stmts)) # Run BeliefEngine on unique statements epe = BeliefEngine() epe.set_prior_probs(pa.unique_stmts) # Build statement hierarchy related_stmts = pa.combine_related() # Run BeliefEngine on hierarchy epe.set_hierarchy_probs(related_stmts) print('%d statements after combining related.' % len(related_stmts)) # Instantiate the mechanism linker # Link statements linked_stmts = MechLinker.infer_active_forms(related_stmts) linked_stmts += MechLinker.infer_modifications(related_stmts) linked_stmts += MechLinker.infer_activations(related_stmts) # Run BeliefEngine on linked statements epe.set_linked_probs(linked_stmts) # Print linked statements for debugging purposes print('Linked\n=====') for ls in linked_stmts: print(ls.inferred_stmt.belief, ls.inferred_stmt) print('=============') # Combine all statements including linked ones all_statements = related_stmts + [ls.inferred_stmt for ls in linked_stmts] # Instantiate a new preassembler pa = Preassembler(bio_ontology, all_statements) # Build hierarchy again pa.combine_duplicates() # Choose the top-level statements related_stmts = pa.combine_related() # Remove top-level statements that came only from the prior if background_assertions is not None: nonbg_stmts = [ stmt for stmt in related_stmts if stmt not in background_assertions ] else: nonbg_stmts = related_stmts # Dump top-level statements in a pickle with open(otherout_prefix + '.pkl', 'wb') as fh: pickle.dump(nonbg_stmts, fh) # Flatten evidence for statements flattened_evidence_stmts = flatten_evidence(nonbg_stmts) # Start a card counter card_counter = 1 # We don't limit the number of cards reported in this round card_lim = float('inf') top_stmts = [] ############################################### # The belief cutoff for statements belief_cutoff = 0.3 ############################################### # Sort by amount of evidence for st in sorted(flattened_evidence_stmts, key=lambda x: x.belief, reverse=True): if st.belief >= belief_cutoff: print(st.belief, st) if st.belief < belief_cutoff: print('SKIP', st.belief, st) # If it's background knowledge, we skip the statement if is_background_knowledge(st): print('This statement is background knowledge - skipping.') continue # Assemble IndexCards ia = IndexCardAssembler([st], pmc_override=pmcid) ia.make_model() # If the index card was actually made # (not all statements can be assembled into index cards to # this is often not the case) if ia.cards: # Save the index card json ia.save_model(indexcard_prefix + '-%d.json' % card_counter) card_counter += 1 top_stmts.append(st) if card_counter > card_lim: break # Print the English-assembled model for debugging purposes ea = EnglishAssembler(top_stmts) print('=======================') print(ea.make_model().encode('utf-8')) print('=======================') # Print the statement graph graph = render_stmt_graph(nonbg_stmts) graph.draw(otherout_prefix + '_graph.pdf', prog='dot') # Print statement diagnostics print_stmts(pa.stmts, otherout_prefix + '_statements.tsv') print_stmts(related_stmts, otherout_prefix + '_related_statements.tsv')
from indra.mechlinker import MechLinker from indra.assemblers.english import EnglishAssembler def print_linked_stmt(stmt): source_txts = [] for source_stmt in stmt.source_stmts: source_txt = EnglishAssembler([source_stmt]).make_model() source_txts.append(source_txt) query_txt = EnglishAssembler([stmt.inferred_stmt]).make_model() final_txt = 'I know that ' for i, t in enumerate(source_txts): final_txt += '(%d) %s ' % (i+1, t) if i < len(source_txts) -1: final_txt = final_txt[:-2] + ', and ' final_txt += 'Is it therefore true that ' + query_txt[:-1] + '?' print(final_txt) return final_txt if __name__ == '__main__': fname = 'models/rasmachine/rem/model.pkl' model = IncrementalModel(fname) model.preassemble() stmts = model.assembled_stmts linked_stmts = MechLinker.infer_active_forms(stmts) linked_stmts += MechLinker.infer_modifications(stmts) linked_stmts += MechLinker.infer_activations(stmts) for stmt in linked_stmts: print_linked_stmt(stmt)
def run_assembly(stmts, folder, pmcid, background_assertions=None): '''Run assembly on a list of statements, for a given PMCID.''' # Folder for index card output (scored submission) indexcard_prefix = folder + '/index_cards/' + pmcid # Folder for other outputs (for analysis, debugging) otherout_prefix = folder + '/other_outputs/' + pmcid # Do grounding mapping here # Load the TRIPS-specific grounding map and add to the default # (REACH-oriented) grounding map: trips_gm = load_grounding_map('trips_grounding_map.csv') default_grounding_map.update(trips_gm) gm = GroundingMapper(default_grounding_map) mapped_agent_stmts = gm.map_agents(stmts) renamed_agent_stmts = gm.rename_agents(mapped_agent_stmts) # Filter for grounding grounded_stmts = [] for st in renamed_agent_stmts: if all([is_protein_or_chemical(a) for a in st.agent_list()]): grounded_stmts.append(st) # Instantiate the Preassembler pa = Preassembler(hierarchies) pa.add_statements(grounded_stmts) print('== %s ====================' % pmcid) print('%d statements collected in total.' % len(pa.stmts)) # Combine duplicates unique_stmts = pa.combine_duplicates() print('%d statements after combining duplicates.' % len(unique_stmts)) # Run BeliefEngine on unique statements epe = BeliefEngine() epe.set_prior_probs(pa.unique_stmts) # Build statement hierarchy related_stmts = pa.combine_related() # Run BeliefEngine on hierarchy epe.set_hierarchy_probs(related_stmts) print('%d statements after combining related.' % len(related_stmts)) # Instantiate the mechanism linker # Link statements linked_stmts = MechLinker.infer_active_forms(related_stmts) linked_stmts += MechLinker.infer_modifications(related_stmts) linked_stmts += MechLinker.infer_activations(related_stmts) # Run BeliefEngine on linked statements epe.set_linked_probs(linked_stmts) # Print linked statements for debugging purposes print('Linked\n=====') for ls in linked_stmts: print(ls.inferred_stmt.belief, ls.inferred_stmt) print('=============') # Combine all statements including linked ones all_statements = related_stmts + [ls.inferred_stmt for ls in linked_stmts] # Instantiate a new preassembler pa = Preassembler(hierarchies, all_statements) # Build hierarchy again pa.combine_duplicates() # Choose the top-level statements related_stmts = pa.combine_related() # Remove top-level statements that came only from the prior if background_assertions is not None: nonbg_stmts = [stmt for stmt in related_stmts if stmt not in background_assertions] else: nonbg_stmts = related_stmts # Dump top-level statements in a pickle with open(otherout_prefix + '.pkl', 'wb') as fh: pickle.dump(nonbg_stmts, fh) # Flatten evidence for statements flattened_evidence_stmts = flatten_evidence(nonbg_stmts) # Start a card counter card_counter = 1 # We don't limit the number of cards reported in this round card_lim = float('inf') top_stmts = [] ############################################### # The belief cutoff for statements belief_cutoff = 0.3 ############################################### # Sort by amount of evidence for st in sorted(flattened_evidence_stmts, key=lambda x: x.belief, reverse=True): if st.belief >= belief_cutoff: print(st.belief, st) if st.belief < belief_cutoff: print('SKIP', st.belief, st) # If it's background knowledge, we skip the statement if is_background_knowledge(st): print('This statement is background knowledge - skipping.') continue # Assemble IndexCards ia = IndexCardAssembler([st], pmc_override=pmcid) ia.make_model() # If the index card was actually made # (not all statements can be assembled into index cards to # this is often not the case) if ia.cards: # Save the index card json ia.save_model(indexcard_prefix + '-%d.json' % card_counter) card_counter += 1 top_stmts.append(st) if card_counter > card_lim: break # Print the English-assembled model for debugging purposes ea = EnglishAssembler(top_stmts) print('=======================') print(ea.make_model().encode('utf-8')) print('=======================') # Print the statement graph graph = render_stmt_graph(nonbg_stmts) graph.draw(otherout_prefix + '_graph.pdf', prog='dot') # Print statement diagnostics print_stmts(pa.stmts, otherout_prefix + '_statements.tsv') print_stmts(related_stmts, otherout_prefix + '_related_statements.tsv')
from indra.mechlinker import MechLinker from indra.assemblers import EnglishAssembler def print_linked_stmt(stmt): source_txts = [] for source_stmt in stmt.source_stmts: source_txt = EnglishAssembler([source_stmt]).make_model() source_txts.append(source_txt) query_txt = EnglishAssembler([stmt.inferred_stmt]).make_model() final_txt = 'I know that ' for i, t in enumerate(source_txts): final_txt += '(%d) %s ' % (i + 1, t) if i < len(source_txts) - 1: final_txt = final_txt[:-2] + ', and ' final_txt += 'Is it therefore true that ' + query_txt[:-1] + '?' print(final_txt) return final_txt if __name__ == '__main__': fname = 'models/rasmachine/rem/model.pkl' model = IncrementalModel(fname) model.preassemble() stmts = model.assembled_stmts linked_stmts = MechLinker.infer_active_forms(stmts) linked_stmts += MechLinker.infer_modifications(stmts) linked_stmts += MechLinker.infer_activations(stmts) for stmt in linked_stmts: print_linked_stmt(stmt)