示例#1
0
文件: use.py 项目: JcpLee/gender
def use(src):

    x = tf.placeholder(tf.float32, [
        None, train_net.IMAGE_SIZE, train_net.IMAGE_SIZE,
        train_net.NUM_CHANNELS
    ],
                       name='x-input')
    img = Image.open(src)  #输入图片路径
    img_rgb = img.convert("RGB")
    img_rgb = img.resize((227, 227))

    data = img_rgb.getdata()
    data = np.matrix(data, dtype='float')

    xs = tf.reshape(data, [1, 227, 227, 3])

    y = inference.alex_net(X=x,
                           output=2,
                           dropout=train_net.DROPOUT,
                           regularizer=None)
    #tf.argmax()返回向量中最大值位置,tf.equal()返回两个向量对应位置比较结果 返回值为布尔类型

    rel = tf.argmax(y, 1)

    variable_averages = tf.train.ExponentialMovingAverage(
        train_net.MOVING_AVERAGE_DECAY)
    #加载变量的滑动平均值
    saver = tf.train.Saver(variable_averages.variables_to_restore())

    #
    # saver = tf.train.Saver()
    cls = 'Male'
    with tf.Session() as sess:
        #返回模型变量取值的路径
        tf.global_variables_initializer().run()

        ckpt = tf.train.get_checkpoint_state(train_net.MODEL_SAVE_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            #ckpt.model_checkpoint_path返回最新的模型变量取值的路径
            saver.restore(sess, ckpt.model_checkpoint_path)

            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]
            xs = sess.run(xs)
            rel = sess.run(rel, feed_dict={x: xs})
            if (rel == 1):
                cls = 'Female'
            print('result is %s' % (cls))

            plt.imshow(img)  # 显示图片
            plt.axis('on')  # 不显示坐标轴
            plt.title('%s' % cls)
            plt.show()
        else:
            print('NO checkpoint file found')
            return
示例#2
0
def evaluate(mnist):
    # with tf.Graph().as_default() as g:
    # x = tf.placeholder(tf.float32, [None, mnist_inferenceLeNet.INPUT_NODE], name='x-input')
    x = tf.placeholder(tf.float32, [
        None, train_net.IMAGE_SIZE, train_net.IMAGE_SIZE,
        train_net.NUM_CHANNELS
    ],
                       name='x-input')
    y_ = tf.placeholder(tf.float32, [None, train_net.OUTPUT_NODE],
                        name='y-input')

    reshape_xs = np.reshape(
        mnist.validation.images,
        (mnist.validation.num_examples, train_net.IMAGE_SIZE,
         train_net.IMAGE_SIZE, train_net.NUM_CHANNELS))

    validata_feed = {x: reshape_xs, y_: mnist.validation.labels}

    y, f = inference.alex_net(X=x,
                              output=10,
                              dropout=train_net.DROPOUT,
                              regularizer=None)
    #tf.argmax()返回向量中最大值位置,tf.equal()返回两个向量对应位置比较结果 返回值为布尔类型
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    #数据类型转换
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # variable_averages = tf.train.ExponentialMovingAverage(train_net.MOVING_AVERAGE_DECAY)
    # #加载变量的滑动平均值
    # saver = tf.train.Saver(variable_averages.variables_to_restore())

    #加载保存模型的变量
    saver = tf.train.Saver()

    while True:
        with tf.Session() as sess:
            #返回模型变量取值的路径
            ckpt = tf.train.get_checkpoint_state(train_net.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                #ckpt.model_checkpoint_path返回最新的模型变量取值的路径
                saver.restore(sess, ckpt.model_checkpoint_path)

                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                print('前层特征:')
                print(sess.run(f, feed_dict=validata_feed))

                print(
                    'After %s traing steps validation accuracy is %g' %
                    (global_step, sess.run(accuracy, feed_dict=validata_feed)))
            else:
                print('NO checkpoint file found')
                return
        time.sleep(EVAL_INTERVAL_SECS)
示例#3
0
def evaluate(mnist, i):
    x = tf.placeholder(tf.float32, [
        1, train_net.IMAGE_SIZE, train_net.IMAGE_SIZE, train_net.NUM_CHANNELS
    ],
                       name='x-input')

    y, f = inference.alex_net(X=x,
                              output=10,
                              dropout=train_net.DROPOUT,
                              regularizer=None)

    result = tf.argmax(y, 1)

    variable_averages = tf.train.ExponentialMovingAverage(
        train_net.MOVING_AVERAGE_DECAY)
    #加载变量的滑动平均值
    saver = tf.train.Saver(variable_averages.variables_to_restore())

    #加载保存模型的变量
    # saver = tf.train.Saver()

    with tf.Session() as sess:
        #返回模型变量取值的路径
        ckpt = tf.train.get_checkpoint_state(train_net.MODEL_SAVE_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            #ckpt.model_checkpoint_path返回最新的模型变量取值的路径
            saver.restore(sess, ckpt.model_checkpoint_path)

            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]
            reshape_xs = np.reshape(
                mnist.test.images[i],
                (1, train_net.IMAGE_SIZE, train_net.IMAGE_SIZE,
                 train_net.NUM_CHANNELS))

            test_feed = {x: reshape_xs}

            result = sess.run(result, feed_dict=test_feed)

            print('After %s traing steps test result is %g' %
                  (global_step, result))
            print('truly result is %s' %
                  (sess.run(tf.argmax(mnist.test.labels[i]))))
        else:
            print('NO checkpoint file found')
            return
示例#4
0
文件: test.py 项目: JcpLee/gender
def test():

    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(
        filename_queue)  # return file_name and file

    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label':
                                           tf.FixedLenFeature([], tf.int64),
                                           'img':
                                           tf.FixedLenFeature([], tf.string),
                                           'width':
                                           tf.FixedLenFeature([], tf.int64),
                                           'height':
                                           tf.FixedLenFeature([], tf.int64),
                                           'channels':
                                           tf.FixedLenFeature([], tf.int64)
                                       })  # return image and label

    label = tf.cast(features['label'], tf.float32)  # throw label tensor
    # height = tf.cast(features['height'],tf.int32)
    height = features['height']
    width = tf.cast(features['width'], tf.int32)
    channels = tf.cast(features['channels'], tf.int32)

    img = tf.decode_raw(features['img'], tf.uint8)
    print(type(height))
    img = tf.reshape(img, [227, 227, 3])

    img_batch, label_batch = tf.train.shuffle_batch([img, label],
                                                    batch_size=1000,
                                                    capacity=5173,
                                                    min_after_dequeue=5172,
                                                    num_threads=4)

    x = tf.placeholder(tf.float32, [
        None, train_net.IMAGE_SIZE, train_net.IMAGE_SIZE,
        train_net.NUM_CHANNELS
    ],
                       name='x-input')
    y_ = tf.placeholder(tf.int64, [None], name='y-input')

    # validata_feed = {x: reshape_xs, y_: mnist.validation.labels}

    y = inference.alex_net(X=x,
                           output=2,
                           dropout=train_net.DROPOUT,
                           regularizer=None)
    #tf.argmax()返回向量中最大值位置,tf.equal()返回两个向量对应位置比较结果 返回值为布尔类型

    correct_prediction = tf.equal(tf.argmax(y, 1), y_)
    #数据类型转换
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    # variable_averages = tf.train.ExponentialMovingAverage(train_net.MOVING_AVERAGE_DECAY)
    # #加载变量的滑动平均值
    # saver = tf.train.Saver(variable_averages.variables_to_restore())

    #加载保存模型的变量

    saver = tf.train.Saver()

    with tf.Session() as sess:
        #返回模型变量取值的路径
        tf.global_variables_initializer().run()
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        xs, ys = sess.run([img_batch, label_batch])
        ckpt = tf.train.get_checkpoint_state(train_net.MODEL_SAVE_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            #ckpt.model_checkpoint_path返回最新的模型变量取值的路径
            saver.restore(sess, ckpt.model_checkpoint_path)

            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]

            print('test accuracy is %g' %
                  (sess.run(accuracy, feed_dict={
                      x: xs,
                      y_: ys
                  })))
        else:
            print('NO checkpoint file found')
            return
示例#5
0
# Parameters
learn_rate = 0.001
decay_rate = 0.1
batch_size = 64
display_step = 20

n_classes = training.num_labels # we got mad kanji
dropout = 0.8 # Dropout, probability to keep units
imagesize = 227
img_channel = 3

x = tf.placeholder(tf.float32, [None, imagesize, imagesize, img_channel])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)

pred = inference.alex_net(x, keep_prob, n_classes, imagesize, img_channel)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))

global_step = tf.Variable(0, trainable=False)
lr = tf.train.exponential_decay(learn_rate, global_step, 1000, decay_rate, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost, global_step=global_step)

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

init = tf.initialize_all_variables()
saver = tf.train.Saver()
tf.add_to_collection("x", x)
tf.add_to_collection("y", y)
tf.add_to_collection("keep_prob", keep_prob)
tf.add_to_collection("pred", pred)
示例#6
0
# Parameters
learn_rate = 0.001
decay_rate = 0.1
batch_size = 64
display_step = 20

n_classes = training.num_labels  # we got mad kanji
dropout = 0.8  # Dropout, probability to keep units
imagesize = 227
img_channel = 3

x = tf.placeholder(tf.float32, [None, imagesize, imagesize, img_channel])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)  # dropout (keep probability)

pred = inference.alex_net(x, keep_prob, n_classes, imagesize, img_channel)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))

global_step = tf.Variable(0, trainable=False)
lr = tf.train.exponential_decay(learn_rate,
                                global_step,
                                1000,
                                decay_rate,
                                staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
    cost, global_step=global_step)

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

init = tf.initialize_all_variables()
示例#7
0
def train(mnist):

    #定义预输入
    x = tf.placeholder(tf.float32,
                       [None, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS],
                       name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')

    #定义正则化
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)

    #调用神经网计算输出结果
    y, _ = inference.alex_net(X=x,
                              output=OUTPUT_NODE,
                              dropout=DROPOUT,
                              regularizer=None)
    result = tf.argmax(y, 1, name='out')

    #定义统计训练轮数的全局变量
    global_step = tf.Variable(0, trainable=False)
    #定义滑动平均
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    variable_averages_op = variable_averages.apply(tf.trainable_variables())

    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    # loss = cross_entropy_mean+tf.add_n(tf.get_collection('losses'))
    loss = cross_entropy_mean
    #定义学习率变化
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY)

    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(
        loss, global_step=global_step)
    # train_step = tf.train.MomentumOptimizer(learning_rate,0.9).minimize(loss,global_step=global_step)
    #同时更新滑动平均和网络参数
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name='train')

    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            reshape_xs = np.reshape(
                xs, (BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
            _, loss_value, step = sess.run([train_op, loss, global_step],
                                           feed_dict={
                                               x: reshape_xs,
                                               y_: ys
                                           })

            if i % 100 == 0:
                print('After %d training steps,loss on training batch is %g' %
                      (step, loss_value))
                #保存checkpoint文件
                saver.save(sess,
                           os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
                           global_step=global_step)
                #保存pb文件
                output_graph_def = graph_util.convert_variables_to_constants(
                    sess, sess.graph_def, ['out'])
                with tf.gfile.GFile('model_pb/combined_model.pb', 'wb') as f:
                    f.write(output_graph_def.SerializeToString())