def testTrainingAndInferenceGraphsAreCompatible(self, mock_provide_custom_data, unused_mock_gan_train): # Training and inference graphs can get out of sync if changes are made # to one but not the other. This test will keep them in sync. # Save the training graph train_sess = tf.Session() FLAGS.image_set_x_file_pattern = '/tmp/x/*.jpg' FLAGS.image_set_y_file_pattern = '/tmp/y/*.jpg' FLAGS.batch_size = 3 FLAGS.patch_size = 128 FLAGS.generator_lr = 0.02 FLAGS.discriminator_lr = 0.3 FLAGS.train_log_dir = self._export_dir FLAGS.master = 'master' FLAGS.task = 0 FLAGS.cycle_consistency_loss_weight = 2.0 FLAGS.max_number_of_steps = 1 mock_provide_custom_data.return_value = (tf.zeros([ 3, 4, 4, 3, ]), tf.zeros([3, 4, 4, 3])) train.main(None) init_op = tf.global_variables_initializer() train_sess.run(init_op) train_saver = tf.train.Saver() train_saver.save(train_sess, save_path=self._ckpt_path) # Create inference graph tf.reset_default_graph() FLAGS.patch_dim = FLAGS.patch_size logging.info('dir_path: %s', os.listdir(self._export_dir)) FLAGS.checkpoint_path = self._ckpt_path FLAGS.image_set_x_glob = self._image_glob FLAGS.image_set_y_glob = self._image_glob FLAGS.generated_x_dir = self._genx_dir FLAGS.generated_y_dir = self._geny_dir inference_demo.main(None) logging.info('gen x: %s', os.listdir(self._genx_dir)) # Check that the image names match self.assertSetEqual(set(_basenames_from_glob(FLAGS.image_set_x_glob)), set(os.listdir(FLAGS.generated_y_dir))) self.assertSetEqual(set(_basenames_from_glob(FLAGS.image_set_y_glob)), set(os.listdir(FLAGS.generated_x_dir))) # Check that each image in the directory looks as expected for directory in [FLAGS.generated_x_dir, FLAGS.generated_x_dir]: for base_name in os.listdir(directory): image_path = os.path.join(directory, base_name) self.assertRealisticImage(image_path)
def testTrainingAndInferenceGraphsAreCompatible( self, mock_provide_custom_data, unused_mock_gan_train): # Training and inference graphs can get out of sync if changes are made # to one but not the other. This test will keep them in sync. # Save the training graph train_sess = tf.Session() FLAGS.image_set_x_file_pattern = '/tmp/x/*.jpg' FLAGS.image_set_y_file_pattern = '/tmp/y/*.jpg' FLAGS.batch_size = 3 FLAGS.patch_size = 128 FLAGS.generator_lr = 0.02 FLAGS.discriminator_lr = 0.3 FLAGS.train_log_dir = self._export_dir FLAGS.master = 'master' FLAGS.task = 0 FLAGS.cycle_consistency_loss_weight = 2.0 FLAGS.max_number_of_steps = 1 mock_provide_custom_data.return_value = ( tf.zeros([3, 4, 4, 3,]), tf.zeros([3, 4, 4, 3])) train.main(None) init_op = tf.global_variables_initializer() train_sess.run(init_op) train_saver = tf.train.Saver() train_saver.save(train_sess, save_path=self._ckpt_path) # Create inference graph tf.reset_default_graph() FLAGS.patch_dim = FLAGS.patch_size logging.info('dir_path: %s', os.listdir(self._export_dir)) FLAGS.checkpoint_path = self._ckpt_path FLAGS.image_set_x_glob = self._image_glob FLAGS.image_set_y_glob = self._image_glob FLAGS.generated_x_dir = self._genx_dir FLAGS.generated_y_dir = self._geny_dir inference_demo.main(None) logging.info('gen x: %s', os.listdir(self._genx_dir)) # Check that the image names match self.assertSetEqual( set(_basenames_from_glob(FLAGS.image_set_x_glob)), set(os.listdir(FLAGS.generated_y_dir))) self.assertSetEqual( set(_basenames_from_glob(FLAGS.image_set_y_glob)), set(os.listdir(FLAGS.generated_x_dir))) # Check that each image in the directory looks as expected for directory in [FLAGS.generated_x_dir, FLAGS.generated_x_dir]: for base_name in os.listdir(directory): image_path = os.path.join(directory, base_name) self.assertRealisticImage(image_path)