batch_size = 128 updates_per_epoch = 100 max_epoch = 50 exp_name = "mnist_%s" % timestamp log_dir = os.path.join(root_log_dir, exp_name) checkpoint_dir = os.path.join(root_checkpoint_dir, exp_name) mkdir_p(log_dir) mkdir_p(checkpoint_dir) dataset = MnistDataset() latent_spec = [ (Uniform(62), False), (Categorical(10), True), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True), ] model = RegularizedGAN( output_dist=MeanBernoulli(dataset.image_dim), latent_spec=latent_spec, batch_size=batch_size, image_shape=dataset.image_shape, network_type="mnist", ) algo = InfoGANTrainer( model=model,
output_dist = None network_type = 'dcgan' if FLAGS.train_dataset == "mnist": dataset = datasets.MnistDataset() output_dist = MeanBernoulli(dataset.image_dim) network_type = 'mnist' dataset.batch_idx = 100 else: dataset = datasets.Dataset(name=FLAGS.train_dataset, batch_size=batch_size, output_size=FLAGS.output_size) val_dataset = datasets.Dataset(name=FLAGS.val_dataset, batch_size=batch_size, output_size=FLAGS.output_size) latent_spec = [(Uniform(100), False)] if FLAGS.categories is not None: latent_spec.append((Categorical(FLAGS.categories), True)) is_reg = False for x, y in latent_spec: if y: is_reg = True model = RegularizedGAN( output_dist=output_dist, latent_spec=latent_spec, is_reg=is_reg, batch_size=batch_size, image_shape=dataset.image_shape, network_type=network_type,
def train(configPath): with open(configPath, 'r') as f: d = json.load(f) train_dataset = d['train_dataset'] train_Folder = d['train_Folder'] val_dataset = d['val_dataset'] output_size = d['output_size'] categories = d['categories'] batch_size = d['batch_size'] if d.has_key('improvedGan'): improvedGan = d['improvedGan'] else: improvedGan = False print("Using improvedGAN ", improvedGan) if d.has_key('exp_name'): exp_name = d['exp_name'] else: filename = os.path.split(configPath)[-1] assert (len(filename.split(".")) == 2) exp_name = filename.split(".")[0] arch = d['arch'] if d.has_key('semiSup'): semiSup = d['semiSup'] else: semiSup = False if d.has_key('trainSplit'): trainSplit = d['trainSplit'] else: trainSplit = 0.7 now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') root_log_dir = "logs/" + train_dataset root_checkpoint_dir = "ckt/" + train_dataset root_samples_dir = "samples/" + train_dataset updates_per_epoch = 100 max_epoch = 50 if exp_name is None: exp_name = "t-%s_v-%s_o-%d" % (train_dataset, val_dataset, output_size) if not (categories is None): exp_name = exp_name + "_c-%d" % (categories) exp_name = exp_name + "_%s" % (timestamp) print("Experiment Name: %s" % (exp_name)) log_dir = os.path.join(root_log_dir, exp_name) checkpoint_dir = os.path.join(root_checkpoint_dir, exp_name) samples_dir = os.path.join(root_samples_dir, exp_name) mkdir_p(log_dir) mkdir_p(checkpoint_dir) mkdir_p(samples_dir) output_dist = None network_type = arch if train_dataset == "mnist": print("Creating train dataset ") dataset = datasets.MnistDataset() output_dist = MeanBernoulli(dataset.image_dim) print("CREATED train dataset ") network_type = 'mnist' print("Creating VAL dataset ") val_dataset = dataset elif train_dataset == "dataFolder": dataset = datasets.DataFolder(train_Folder, batch_size, out_size=output_size, validation_proportion=(1 - trainSplit)) print("Folder datasets created ") val_dataset = dataset else: dataset = datasets.Dataset(name=train_dataset, batch_size=batch_size, output_size=output_size) val_dataset = datasets.Dataset(name=val_dataset, batch_size=batch_size, output_size=output_size) latent_spec = [(Uniform(100), False)] if categories is not None: latent_spec.append((Categorical(categories), True)) is_reg = False for x, y in latent_spec: if y: is_reg = True model = RegularizedGAN(output_dist=output_dist, latent_spec=latent_spec, is_reg=is_reg, batch_size=batch_size, image_shape=dataset.image_shape, network_type=network_type, impr=improvedGan) if (not improvedGan): algo = InfoGANTrainer(model=model, dataset=dataset, val_dataset=val_dataset, batch_size=batch_size, isTrain=True, exp_name=exp_name, log_dir=log_dir, checkpoint_dir=checkpoint_dir, samples_dir=samples_dir, max_epoch=max_epoch, info_reg_coeff=1.0, generator_learning_rate=2e-3, discriminator_learning_rate=2e-3, semiSup=semiSup) else: algo = ImprovedGAN(model=model, dataset=dataset, val_dataset=val_dataset, batch_size=batch_size, isTrain=True, exp_name=exp_name, log_dir=log_dir, checkpoint_dir=checkpoint_dir, samples_dir=samples_dir, max_epoch=max_epoch, info_reg_coeff=1.0, generator_learning_rate=2e-3, discriminator_learning_rate=2e-3, semiSup=semiSup) #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.03) #config=tf.ConfigProto(gpu_options=gpu_options) #device_name = "/gpu:0" #with tf.device(device_name): algo.init_opt() with tf.Session() as sess: algo.train(sess)
#DATASET NEEDS TO GET THE TRAIN SPLIT RIGHT #BE CAREFUL OF THIS. NOT TRUE. JUST NEED NEXT BATCH WORKING #WHAT DOES INVERSE TRANSFORM DO? #SWEET. ALL OF THIS LOOKS GOOD. dataset = HeartDataset() #THESE DEFINITELY NEED TO BE CHANGED # # latent_spec = [ # (Uniform(62), False), # (Categorical(10), True), # (Uniform(1, fix_std=True), True), # (Uniform(1, fix_std=True), True), # ] #SAME LATENT SPEC AS REPORTED FOR FACES latent_spec = [(Uniform(128), False), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True)] #EVERYTHING SEEMS FINE. NETWORK ARCHITECTURE SHOULD #BE CHANGED. model = RegularizedGAN( output_dist=MeanBernoulli(dataset.image_dim), latent_spec=latent_spec, batch_size=batch_size, image_shape=dataset.image_shape, network_type="heart", )
def train(model_name, learning_params): timestamp = get_timestamp() root_log_dir = os.path.join('logs', model_name) root_checkpoint_dir = os.path.join('ckt', model_name) experiment_name = '{}_{}'.format(model_name, timestamp) log_dir = os.path.join(root_log_dir, experiment_name) checkpoint_dir = os.path.join(root_checkpoint_dir, experiment_name) make_exists(log_dir) make_exists(checkpoint_dir) batch_size = learning_params['batch_size'] updates_per_epoch = learning_params['updates_per_epoch'] max_epoch = learning_params['max_epoch'] trainer = learning_params['trainer'] if model_name == 'mnist_infogan': output_dataset = MnistDataset() latent_spec = [ (Uniform(62), False), (Categorical(10), True), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True), ] model = MNISTInfoGAN( batch_size=batch_size, output_dataset=output_dataset, output_dist=MeanBernoulli(output_dataset.image_dim), latent_spec=latent_spec, ) elif model_name == 'mnist_wasserstein': output_dataset = MnistDataset() latent_spec = [ (Uniform(62), False), ] model = MNISTInfoGAN( batch_size=batch_size, output_dataset=output_dataset, output_dist=MeanBernoulli(output_dataset.image_dim), final_activation=None, latent_spec=latent_spec, ) elif model_name == 'celebA_infogan': output_dataset = CelebADataset() latent_spec = [ (Uniform(128), False), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), ] model = CelebAInfoGAN( batch_size=batch_size, output_dataset=output_dataset, output_dist=MeanGaussian(output_dataset.image_dim, fix_std=True), latent_spec=latent_spec, ) elif model_name == 'celebA_wasserstein': output_dataset = CelebADataset() latent_spec = [ (Uniform(128), False), ] model = CelebAInfoGAN( batch_size=batch_size, output_dataset=output_dataset, output_dist=MeanGaussian(output_dataset.image_dim, fix_std=True), final_activation=None, latent_spec=latent_spec, ) elif model_name == 'horse_zebra': horse_dataset = HorseOrZebraDataset('horse') zebra_dataset = HorseOrZebraDataset('zebra') horse2zebra_model = Horse2Zebra_CycleGAN( input_dataset=horse_dataset, batch_size=batch_size, output_dataset=zebra_dataset, output_dist=MeanGaussian(zebra_dataset.image_dim, fix_std=True), final_activation=None, scope_suffix='_horse2zebra', ) zebra2horse_model = Horse2Zebra_CycleGAN( input_dataset=zebra_dataset, batch_size=batch_size, output_dataset=horse_dataset, output_dist=MeanGaussian(zebra_dataset.image_dim, fix_std=True), final_activation=None, scope_suffix='_zebra2horse', ) else: raise ValueError('Invalid model_name: {}'.format(model_name)) if trainer == 'infogan': d_optim = tf.train.AdamOptimizer(2e-4, beta1=0.5) g_optim = tf.train.AdamOptimizer(1e-3, beta1=0.5) loss = GANLoss() loss_builder = InfoGANLossBuilder( model=model, loss=loss, batch_size=batch_size, g_optimizer=g_optim, d_optimizer=d_optim, ) algo = GANTrainer( loss_builder=loss_builder, exp_name=experiment_name, log_dir=log_dir, checkpoint_dir=checkpoint_dir, max_epoch=max_epoch, updates_per_epoch=updates_per_epoch, ) elif trainer == 'wasserstein': d_optim = tf.train.AdamOptimizer(2e-4, beta1=0.5) g_optim = tf.train.AdamOptimizer(1e-3, beta1=0.5) loss = WassersteinGANLoss() loss_builder = GANLossBuilder( model=model, loss=loss, batch_size=batch_size, g_optimizer=g_optim, d_optimizer=d_optim, ) algo = WassersteinGANTrainer( loss_builder=loss_builder, exp_name=experiment_name, log_dir=log_dir, checkpoint_dir=checkpoint_dir, max_epoch=max_epoch, updates_per_epoch=updates_per_epoch, ) elif trainer == 'test': d_optim = tf.train.AdamOptimizer(2e-4, beta1=0.5) g_optim = tf.train.AdamOptimizer(1e-3, beta1=0.5) loss = GANLoss() loss_builder = InfoGANLossBuilder( model=model, loss=loss, dataset=output_dataset, batch_size=batch_size, discrim_optimizer=d_optim, generator_optimizer=g_optim, ) algo = GANTrainer( loss_builder=loss_builder, exp_name=experiment_name, log_dir=log_dir, checkpoint_dir=checkpoint_dir, max_epoch=max_epoch, updates_per_epoch=updates_per_epoch, ) elif trainer == 'cycle_gan': d_optim = tf.train.AdamOptimizer(2e-4, beta1=0.5) g_optim = tf.train.AdamOptimizer(2e-4, beta1=0.5) loss = LeastSquaresGANLoss() horse2zebra_loss_builder = GANLossBuilder( model=horse2zebra_model, loss=loss, batch_size=batch_size, ) zebra2horse_loss_builder = GANLossBuilder( model=zebra2horse_model, loss=loss, batch_size=batch_size, ) loss_builders = [horse2zebra_loss_builder, zebra2horse_loss_builder] loss_builder = CycleGANLossBuilder( loss_builders, g_optimizer=g_optim, d_optimizer=d_optim, ) algo = GANTrainer( loss_builder=loss_builder, exp_name=experiment_name, log_dir=log_dir, checkpoint_dir=checkpoint_dir, max_epoch=max_epoch, updates_per_epoch=updates_per_epoch, ) else: raise ValueError('Invalid trainer: {}'.format(trainer)) algo.train()
mkdir_p(log_dir) mkdir_p(checkpoint_dir) # load the rectangle data rectangles = np.array(pickle.load(open(training_file, 'rb'))) # ShapeDataset has a fixed height and widht of 28 pixels and only one # matrix per image (grey-scale) dataset = ShapeDataset(rectangles, None) # the variables used for the generation of shapes # Uniform variables are only supported with a value of 1 # Possible would be also e.g. Categorical(10), True) for # a categorical variable with 10 Steps. latent_spec = [ (Uniform(size_z), False), (Uniform(1, fix_std=True), True), (Uniform(1, fix_std=True), True), ] model = RegularizedGAN( output_dist=MeanBernoulli(dataset.image_dim), latent_spec=latent_spec, batch_size=batch_size, image_shape=dataset.image_shape, network_type="mnist", ) algo = InfoGANTrainer( model=model, dataset=dataset,
# In[3]: root_log_dir = "logs/celebA" root_checkpoint_dir = "ckt/celebA" batch_size = 128 updates_per_epoch = 100 # How often to run the logging. checkpoint_snapshot_interval = 1000 # Save a snapshot of the model every __ updates. max_epoch = 50 # In[ ]: # The "C.3 CelebA" input settings: # "For this task, we use 10 ten-dimensional categorical code and 128 noise variables, resulting in a concatenated dimension of 228.." c3_celebA_latent_spec = [ (Uniform(128), False), # Noise (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), ] c3_celebA_image_size = 32 # In[5]:
# In[6]: root_log_dir = "logs/speech_face" root_checkpoint_dir = "ckt/speech_face" batch_size = 128 updates_per_epoch = 50 # How often to run the logging. checkpoint_snapshot_interval = 1000 # Save a snapshot of the model every __ updates. max_epoch = 200 # In[7]: # For now, copy the "C.3 CelebA" input settings: # "For this task, we use 10 ten-dimensional categorical code and 128 noise variables, resulting in a concatenated dimension of 228.." c3_celebA_latent_spec = [ (Uniform(128), False), # Noise (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), (Categorical(10), True), ] c3_celebA_image_size = 32 # For now, copy the "C.4 Faces" input settings: # "For this task, we use 5 continuous latent codes and 128 noise variables, so the input to the generator has dimension 133."