示例#1
0
    kf = KFold(n_splits=FLAGS.folds, random_state=FLAGS.seed)
    for train_index, test_index in kf.split(filter_commits):
        X_train_msg, X_test_msg = np.array(get_items(items=pad_msg, indexes=train_index)), \
                                  np.array(get_items(items=pad_msg, indexes=test_index))
        X_train_added_code, X_test_added_code = np.array(get_items(items=pad_added_code, indexes=train_index)), \
                                                np.array(get_items(items=pad_added_code, indexes=test_index))
        X_train_removed_code, X_test_removed_code = np.array(get_items(items=pad_removed_code, indexes=train_index)), \
                                                    np.array(get_items(items=pad_removed_code, indexes=test_index))
        y_train, y_test = np.array(get_items(items=labels, indexes=train_index)), \
                          np.array(get_items(items=labels, indexes=test_index))
        return X_test_msg, X_test_added_code, X_test_removed_code, y_test


if __name__ == "__main__":
    tf = model_parameters()
    FLAGS = tf.flags.FLAGS
    print_params(tf)

    if FLAGS.eval_test:
        X_test_msg, X_test_added_code, X_test_removed_code, y_test = loading_data_lstm(FLAGS=FLAGS)
        print X_test_msg.shape, X_test_added_code.shape, X_test_removed_code.shape, y_test.shape
        # X_test_msg, X_test_added_code, X_test_removed_code, y_test = loading_data_all(FLAGS=FLAGS)
    else:
        print "You need to turn on the evaluating file."
        exit()

    # checkpoint_dir, model = "./runs/fold_0_1521641601/checkpoints", "keras_model"
    # checkpoint_dir, model = "./runs/fold_0_1522031841/checkpoints", "lstm_all"
    checkpoint_dir, model = "./runs/fold_0_1522045240/checkpoints", "lstm_code"
    dirs = get_all_checkpoints(checkpoint_dir=checkpoint_dir)
示例#2
0
            # path_model = "./keras_model/%s_%s.h5" % (FLAGS.model, str(cntfold))
            path_model = "./keras_model/test_%s_%s.h5" % (FLAGS.model,
                                                          str(cntfold))
            # path_model = "./keras_model/%s_%s_testing.h5" % (FLAGS.model, str(cntfold))
            model = load_model(path_model)
        else:
            print "You need to give correct model name"
            exit()
        y_pred = model.predict(X_test_msg, batch_size=FLAGS.batch_size)
        y_pred = np.ravel(y_pred)

        pred_dict.update(make_dictionary(y_pred=y_pred, y_index=test_index))

        y_pred = y_pred.tolist()
        pred_dict_list += y_pred
    # print len(pred_dict_list)
    # exit()
    # path_file = "./statistical_test_prob/" + FLAGS.model + ".txt"
    # write_file(path_file=path_file, data=sorted_dict(dict=pred_dict))
    path_file = "./statistical_test_prob/" + FLAGS.model + "_checking.txt"
    write_file(path_file=path_file, data=pred_dict_list)


if __name__ == "__main__":
    tf_ = model_parameters()
    FLAGS_ = tf_.flags.FLAGS
    print_params(tf_)

    folds_, random_state_ = 5, None
    loading_baseline_july(tf=tf_, folds=folds_, random_state=random_state_)