示例#1
0
def main(initialization='he'):
    train_X, train_Y, test_X, test_Y = load_dataset()

    # try different initialization methods
    if initialization == 'zero':
        parameters = model(train_X, train_Y, initialization='zero')
    elif initialization == 'random':
        parameters = model(train_X, train_Y, initialization='random')
    else:
        parameters = model(train_X, train_Y, initialization='he')

    # make predictions
    print("-----The result of using " + initialization + "-----")
    print("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)

    # plot the result
    plt.title("Model with " + initialization + " initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5, 1.5])
    axes.set_ylim([-1.5, 1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X,
                           train_Y)
示例#2
0
def main():
    # 读取并绘制数据: blue/red dots in circles
    train_X, train_Y, test_X, test_Y = load_dataset()

    # 选择一个初始化方法
    parameters = initialize_parameters_he([2, 4, 1])

    # 打印随机初始化后各参数的值
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

    # 通过神经网络模型进行训练,得到参数
    parameters = model(train_X, train_Y, initialization = "he")

    # 用训练得到的参数进行预测,并分别输出训练集和测试集的预测准确率
    print ("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print ("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)

    # 打印预测结果
    print (predictions_train)
    print (predictions_test)

    # 绘制红蓝点分离情况图
    plt.title("Model with He initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5,1.5])
    axes.set_ylim([-1.5,1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, np.squeeze(train_Y))    # 注意最后一个参数不能直接用train_Y,要加上np.squeeze() 
def main():
    train_X, train_Y, test_X, test_Y = load_dataset()

    # not so good initialization
    parameters = model(train_X, train_Y, initialization="random")
    print("On the train set:")
    predict(train_X, train_Y, parameters)
    print("On the test set:")
    predict(test_X, test_Y, parameters)

    # good initialization
    parameters = model(train_X, train_Y, initialization="he")
    print("On the train set:")
    predict(train_X, train_Y, parameters)
    print("On the test set:")
    predict(test_X, test_Y, parameters)
    plt.title("Model with He initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5, 1.5])
    axes.set_ylim([-1.5, 1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X,
                           train_Y)
示例#4
0
def main():
    plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    # load image dataset: blue/red dots in circles
    train_X, train_Y, test_X, test_Y = load_dataset()

    parameters = model(train_X, train_Y, initialization = "he")
    print ("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print ("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)

    plt.figure()
    plt.title("Model with He initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5,1.5])
    axes.set_ylim([-1.5,1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
    
    plt.show()
示例#5
0
                print("Iteration " + str(i) + " Cost:" + str(cost))
    if is_plot:
        plt.plot(costs)
        plt.ylabel("cost")
        plt.xlabel("#iterations")
        plt.title("Learning rate = " + str(learning_rate))
        plt.show()
    return params


# ### 初始化参数
# 首先读取训练数据并通过plt观察分布

# In[3]:

train_X, train_Y, test_X, test_Y = init_utils.load_dataset(is_plot=True)

# #### 全零初始化

# In[4]:


def init_params_zeros(layer_dims):
    L = len(layer_dims)
    params = {}
    for i in range(1, L):
        params["W" + str(i)] = np.zeros((layer_dims[i], layer_dims[i - 1]))
        params["b" + str(i)] = np.zeros((layer_dims[i], 1))
    return params

示例#6
0
# In[22]:

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

get_ipython().magic('matplotlib inline')
plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# load image dataset: blue/red dots in circles
train_X, train_Y, test_X, test_Y = load_dataset()

# You would like a classifier to separate the blue dots from the red dots.

# ## 1 - Neural Network model

# You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with:
# - *Zeros initialization* --  setting `initialization = "zeros"` in the input argument.
# - *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values.
# - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015.
#
# **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls.

# In[23]:

示例#7
0
# In[1]:

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

get_ipython().magic('matplotlib inline')
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# load image dataset: blue/red dots in circles
train_X, train_Y, test_X, test_Y = load_dataset()


# You would like a classifier to separate the blue dots from the red dots.

# ## 1 - Neural Network model 

# You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with:  
# - *Zeros initialization* --  setting `initialization = "zeros"` in the input argument.
# - *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values.  
# - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. 
# 
# **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls.

# In[2]:
from init_utils import load_dataset
import matplotlib.pyplot as plt
from layers import *
from multi_layer_nn import MultiLayersNN
from plt_utils import plot_decision_boundary

if __name__ == '__main__':
    X_train, Y_train, X_test, Y_test = load_dataset(is_plot=False)
    assert X_train.shape == (2, 300)
    assert Y_train.shape == (1, 300)
    assert X_test.shape == (2, 100)
    assert Y_test.shape == (1, 100)

    model = MultiLayersNN((X_train.shape[0], 10, 5, 1))
    model.fit(X_train, Y_train, lr=0.1, print_cost_100=True, iter_num=10000)
    print(model.accuracy(X_train, Y_train))
    print(model.accuracy(X_test, Y_test))
    plot_decision_boundary(model.predict, (-1, 1, -1, 1), plt)
    plt.scatter(X_test[:, Y_test.squeeze() == 1][0, :],
                X_test[:, Y_test.squeeze() == 1][1, :])
    plt.scatter(X_test[:, Y_test.squeeze() == 0][0, :],
                X_test[:, Y_test.squeeze() == 0][1, :])
    plt.show()
示例#9
0
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils   #第一部分,初始化
import reg_utils    #第二部分,正则化
import gc_utils     #第三部分,梯度校验
#%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释。
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = init_utils.load_dataset()
plt.show()

def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he", is_polt=True):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代1000次打印一次
        initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】
        is_polt - 是否绘制梯度下降的曲线图
    返回
        parameters - 学习后的参数
    """
    grads = {}
示例#10
0
# %%
os.chdir('./2-1/')

# %%
import gc_utils
import init_utils
import reg_utils
plt.rcParams['figure.figsize'] = (7.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
# # plt.rcParams['image.cmap'] = 'gray'

# %% [markdown]
# # initialize weights

# %%
X_train, Y_train, X_test, Y_test = init_utils.load_dataset(is_plot=True)


# %%
def init_zeros(layers_dims):
    params = {}
    L = len(layers_dims)
    for l in range(1, L):
        params[f'W{l}'] = np.zeros((layers_dims[l], layers_dims[l - 1]))
        params[f'b{l}'] = np.zeros((layers_dims[l], 1))
    return params


def init_random(layers_dims):
    params = {}
    L = len(layers_dims)
示例#11
0
"""
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

#%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 5.0)  #set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
"""
load image dataset: blue/red dots in circles
"""
train_X, train_Y, test_X, test_Y = load_dataset(plot=False)


def model(X,
          Y,
          learning_rate=0.01,
          num_iterations=15000,
          print_cost=True,
          plot_loss=True,
          initialization="he"):
    """
    Implement a 3-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID
    
    Arguments:
        X -- input data, of shape (2, number of examples)
        Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples)
示例#12
0
def main1():
    #%matplotlib inline
    plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'

    # load image dataset: blue/red dots in circles
    train_X, train_Y, test_X, test_Y = load_dataset()

    parameters = initialize_parameters_zeros([3, 2, 1])
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

    parameters = model(train_X, train_Y, initialization="zeros")
    print("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)

    print("predictions_train = " + str(predictions_train))
    print("predictions_test = " + str(predictions_test))

    plt.title("Model with Zeros initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5, 1.5])
    axes.set_ylim([-1.5, 1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X,
                           train_Y)

    parameters = initialize_parameters_random([3, 2, 1])
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

    parameters = model(train_X, train_Y, initialization="random")
    print("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)

    print(predictions_train)
    print(predictions_test)

    plt.title("Model with large random initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5, 1.5])
    axes.set_ylim([-1.5, 1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X,
                           train_Y)

    parameters = initialize_parameters_he([2, 4, 1])
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

    parameters = model(train_X, train_Y, initialization="he")
    print("On the train set:")
    predictions_train = predict(train_X, train_Y, parameters)
    print("On the test set:")
    predictions_test = predict(test_X, test_Y, parameters)

    plt.title("Model with He initialization")
    axes = plt.gca()
    axes.set_xlim([-1.5, 1.5])
    axes.set_ylim([-1.5, 1.5])
    plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X,
                           train_Y)

import numpy as np
import matplotlib.pyplot as plt
import  sklearn
import  sklearn.datasets
import  init_utils ##第一部分,初始化
import reg_utils ##第二部分,正则化
import gc_utils ##第三部分,梯度校验
#%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释
plt.rcParams['figure.figsize'] = (7.0,4.0)#set default size of plots图片像素
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
#显示的图表大小为10,图形的插值是以最近为原则,图像颜色是灰色???

train_X,train_Y,test_X,test_Y = init_utils.load_dataset(is_plot = False)
# plt.show()


#尝试三种初始化方法,1初始化为0,2初始化为随机数,3抑制度异常初始化
def model(X,Y,learning_rate = 0.01,num_iterations = 15000,print_cost = True,initialization='he',is_polt = True):
    '''
    实现一个三层的神经网络:linear->relu->linear->relu->linear->sigmoid
    :param X: 输入的数据,维度为(2,要训练/测试的数量)
    :param Y: 标签,[0/1],维度为(1,对应的是输入的数据的标签)
    :param learning_rate: 学习速率
    :param num_iterations: 迭代的次数
    :param print_cost: 是否打印成本值,每次迭代1000次打印一次
    :param initialize: 字符串类型,初始化的类型['zero'|'random'|'he']
    :param is_plot: 是否绘制梯度下降的曲线图
    :return: 
示例#14
0
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

#%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Load image dataset: blue/red dots in circles
train_X, train_Y, test_X, test_Y, dsplot = load_dataset()
dsplot.show()


# classifier to separate the blue dots from the red dots
def model(X,
          Y,
          learning_rate=0.01,
          num_iterations=15000,
          print_cost=True,
          initialization="he"):
    """
    Implements a three-layer neural network: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.

    Arguments:
        X -- input data, of shape (2, number of examples)
        Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples)
        learning_rate -- learning rate for gradient descent