示例#1
0
def temp_product_storage():
    id_product = 0
    cur.execute("DELETE FROM "+database+".temps")
    for s in range(len(group_name)):
        for i in range (page_number):
            initdata = initialize.init(i+1,get_url(s),attributes[s])
            if(group_name[s] == "JLaptops" and initdata.count < 47):
                break
            data = [[0 for j in range(initdata.count)] for i in range(page_number)]
            for j in range(initdata.count):
                if(group_name[s] == "Ephonesfr" or group_name[s] == "ELaptopsfr" or group_name[s] == "Ephones" or group_name[s] == "ELaptops" or group_name[s] == "EMacbooks"):
                    data[i][j] = Ebay_Scrapping.phone_scrap(initdata.section, j)
                if(group_name[s] == "Jphones" or group_name[s] == "JLaptops"):
                    data[i][j] = Jumia_Scrapping.phone_scrap(initdata, j)
                if(group_name[s] == "WMphones" or group_name[s] == "WMLaptops"):
                    data[i][j] = WallMart_Scrapping.phone_scrap(initdata.section, j)
                if data[i][j] is None:
                    continue
                name = data[i][j].name
                prices = data[i][j].price
                img_link = data[i][j].img
                link = data[i][j].link
                prices = prices.replace(' ', '')
                prices = prices.replace('Dhs', '')
                prices = prices.replace('$', '')
                if(group_name[s] == "Ephonesfr" or group_name[s] == "ELaptopsfr"):
                    prices = re.sub("\,.*", '' , prices)
                prices = prices.replace(',', '')
                prices = re.sub(' .*', '' , prices)
                prices = re.sub("\..*", '' , prices)
                name = list(name)
                prices = list(prices)
                img_link = list(img_link)
                for k in range(len(name)):
                    if name[k] == "'" or name[k] == '"' or name[k] == '-' :
                        name[k] = ""
                name = "".join(name)
                for k in range(len(prices)):
                    if prices[k] == "'" or prices[k] == '"' or prices[k] == '-' or ord(prices[k]) == 160:
                        prices[k] = ""
                prices = "".join(prices)
                for k in range(len(img_link)):
                    if img_link[k] == "'" or img_link[k] == '"':
                        img_link[k] = " "
                img_link = "".join(img_link)
                data[i][j].name = name
                prices = int(prices)
                if(group_name[s] == "Jphones" or group_name[s] == "JLaptops"):
                    prices = prices / dollar_to_mad
                    prices = int(prices)
                data[i][j].price = prices
                data[i][j].img = img_link
                id_product = hashlib.sha256(data[i][j].link.encode('utf-8')).hexdigest()
                sql_statement = "INSERT INTO "+database+".temps VALUES (%s, %s, %s, %s, %s, %s)"
                values = (id_product, get_grp(s),data[i][j].name, data[i][j].img, data[i][j].price, data[i][j].link)
                cur.execute(sql_statement, values)
                db.commit()
示例#2
0
def main():
    args = get_args()
    f = os.path.normpath
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    if args.do_init:
        init(f(args.train_file), f(args.dev_file), f(args.test_file),
             f(args.word_dict_path), f(args.tag_dict_path))
        return
    if args.do_train:
        do_train(f(args.train_file),
                 f(args.output_dir), f(args.word_dict_path),
                 f(args.tag_dict_path), args.max_seq_len, args.embed_dim,
                 args.hidden_dim, args.lr, args.batch_size, args.epochs,
                 args.print_step, device)
    if args.do_eval:
        do_eval(f(args.test_file), f(args.word_dict_path),
                f(args.tag_dict_path), args.max_seq_len,
                args.embed_dim, args.hidden_dim, f(args.output_dir),
                f(args.eval_log_dir), device)
示例#3
0
def start():
	started = False
	initialize.init()
	x=1
	while x>0:
		try:
			bCluster, bSpace = cassandraHelper.makeConnection()
			x=0
		except Exception as er:
			print er
			if started == False:
				print "Starting cassandra",x
				os.system("nohup x-terminal-emulator -e ~/workspace/bemoss_os/bemoss_lib/databases/cassandraAPI/casstart.sh &")
				time.sleep(15)
				started = True
				print 'Waiting for cassandra ...'

			x=1
			time.sleep(5)
	print "Cassandra connected"
示例#4
0
def run_optimizer(method, gp, opts, Y, X_r, Icv, cv_idx, X_o=None):
    if 'min_iter' in opts:
        min_iter = opts['min_iter']
    else:
        min_iter = 10
    if 'max_iter' in opts:
        max_iter = opts['max_iter']
    else:
        max_iter = 100

    # initialize
    LG.info('Optimize %s' % method)
    converged = False
    lmltest_global = SP.inf
    hyperparams_global = None
    Ypred_global = None
    r2_global = -SP.inf
    # hold nfolds of the data out
    Itrain = Icv != cv_idx
    Itest = Icv == cv_idx
    i = 1
    while True:
        LG.info('Iteration: %d' % i)
        converged = False
        # stop, if maximum number of iterations is reached
        if i > max_iter:
            break

        # set data
        if X_o == None:
            gp.setData(Y=Y[Itrain], X_r=X_r[Itrain])
        else:
            gp.setData(Y=Y[Itrain], X_r=X_r[Itrain], X_o=X_o[Itrain])
        hyperparams, Ifilter, bounds = initialize.init(method, Y[Itrain].T,
                                                       X_r[Itrain], opts)

        try:
            [hyperparams_opt, lmltrain] = opt.opt_hyper(gp,
                                                        hyperparams,
                                                        opts=opts,
                                                        Ifilter=Ifilter,
                                                        bounds=bounds)
            # gradient need not to be 0, because we have bounds on the hyperparameters...
            gradient = SP.array([
                LA.norm(x) for x in gp.LMLgrad(hyperparams_opt).values()
            ]).mean()
            LG.info('LMLtrain: %.3f' % gp.LML(hyperparams_opt))
            LG.info('Gradient: %.3f' % (gradient))
            converged = True

        except AssertionError, error:
            print 'Assertion Error: %s' % error
            continue
        except:
示例#5
0
def start():
    started = False
    initialize.init()
    x = 1
    while x > 0:
        try:
            bCluster, bSpace = cassandraHelper.makeConnection()
            x = 0
        except Exception as er:
            print er
            if started == False:
                print "Starting cassandra", x
                os.system(
                    "nohup x-terminal-emulator -e ~/workspace/bemoss_os/bemoss_lib/databases/cassandraAPI/casstart.sh &"
                )
                time.sleep(15)
                started = True
                print 'Waiting for cassandra ...'

            x = 1
            time.sleep(5)
    print "Cassandra connected"
示例#6
0
def run_optimizer(method,gp,opts,Y,X_r,Icv,cv_idx,X_o=None):
    if 'min_iter' in opts:
        min_iter  = opts['min_iter']
    else:
        min_iter = 10
    if 'max_iter' in opts:
        max_iter = opts['max_iter']
    else:
        max_iter = 100

    # initialize
    LG.info('Optimize %s'%method)
    converged = False
    lmltest_global = SP.inf
    hyperparams_global = None
    Ypred_global = None
    r2_global = -SP.inf
    # hold nfolds of the data out
    Itrain = Icv!=cv_idx
    Itest = Icv==cv_idx
    i=1
    while True:
        LG.info('Iteration: %d'%i)
        converged = False
        # stop, if maximum number of iterations is reached
        if i>max_iter:
            break

        # set data
        if X_o==None:
            gp.setData(Y=Y[Itrain],X_r=X_r[Itrain]) 
        else:
            gp.setData(Y=Y[Itrain],X_r=X_r[Itrain],X_o=X_o[Itrain])
        hyperparams,Ifilter,bounds = initialize.init(method,Y[Itrain].T,X_r[Itrain],opts)

        try:
            [hyperparams_opt,lmltrain] = opt.opt_hyper(gp,hyperparams,opts=opts,Ifilter=Ifilter,bounds=bounds)
            # gradient need not to be 0, because we have bounds on the hyperparameters...
            gradient = SP.array([LA.norm(x) for x in gp.LMLgrad(hyperparams_opt).values()]).mean()
            LG.info('LMLtrain: %.3f'%gp.LML(hyperparams_opt))
            LG.info('Gradient: %.3f'%(gradient))
            converged = True

        except AssertionError, error:
            print 'Assertion Error: %s'%error
            continue
        except:
示例#7
0
def measure_runtime(env,N,D,n_reps=10,time_out=10000):
    opts = {'messages':False}
    out_dir = os.path.join(env['out_dir'],'simulations_runtime')
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    t_fast = SP.zeros(n_reps)
    t_slow = SP.zeros(n_reps)
    lml_fast = SP.zeros(n_reps)
    lml_slow = SP.zeros(n_reps)
     
    for i in range(n_reps):
        # load data
        var_signal = 0.5
        data,RV = load_simulations(env,var_signal,N,D,i)

        # initialize
        covar_c = lowrank.LowRankCF(n_dimensions=RV['n_c'])
        covar_r = linear.LinearCF(n_dimensions=RV['n_r'])
        covar_s = lowrank.LowRankCF(n_dimensions=RV['n_sigma'])
        covar_o = fixed.FixedCF(n_dimensions=RV['n_r'])
        X = data.getX(standardized=False)
        Y = data.getY(standardized=False).T
        hyperparams,Ifilter,bounds = initialize.init('GPkronsum_LIN',Y.T,X,RV)
        covar_r.X = X
        covar_o.X = X
        covar_o._K = SP.eye(RV['N'])
        covar_s.X = hyperparams['X_s']
        covar_c.X = hyperparams['X_c']
        kgp_fast = gp_kronsum.KronSumGP(covar_r=covar_r,covar_c=covar_c,covar_s=covar_s,covar_o=covar_o)
        kgp_fast.setData(Y=Y)
        
        # measure time
        signal.signal(signal.SIGALRM,handler)
        signal.alarm(time_out)
        try:
             t_start = time.clock()
             hyperparams_opt,lmltrain = opt.opt_hyper(kgp_fast,hyperparams,Ifilter=Ifilter,bounds=bounds,opts=opts)
             t_stop = time.clock()
             signal.alarm(0)
             t_fast[i] = t_stop - t_start
             lml_fast[i] = lmltrain
        except Exception, e:
            print e
            t_slow += time_out
            break
示例#8
0
def run():
    init("recipes")
    scrape("recipes")
示例#9
0
 def setup_function(self):
   init(app.name())
示例#10
0
from fa.database.models import IncomeStatement
import initialize


""" Enrich financial data with extra data columns calculated from existing columns """

initialize.init()

IncomeStatement \
    .update(operating_income=(
        IncomeStatement.gross_income -
        IncomeStatement.sg_a_expense -
        IncomeStatement.other_operating_expense
    )) \
    .where(IncomeStatement.operating_income >> None) \
    .execute()
示例#11
0
from mysql.connector import connect
import actions
import initialize
import management
import medicine_info
import sale
import stock
import traceback

conn = connect(user='******', passwd='1234')
cur = conn.cursor()

medicine_info.conn = sale.conn = stock.conn = management.conn = initialize.conn = actions.conn = conn
medicine_info.cur = sale.cur = stock.cur = management.cur = initialize.cur = actions.cur = cur

initialize.init()
cur.execute("use MedicalStore")

msg = """
==========    MEDICAL STORE    ==========

0: quit
1: Sales
2: Stock
3: Medicine Information
4: Management
Use ctrl+C in the program to go one step back
"""


while True:
示例#12
0
    f['t_fast'] = t_fast
    f['t_slow'] = t_slow
    f['lml_fast'] = lml_fast
    f['lml_slow'] = lml_slow
    f.close()

    for i in range(n_reps):
        # initialize
        data,RV = load_simulations(env,var_signal,N,D,i)
        covar_c = lowrank.LowRankCF(n_dimensions=RV['n_c'])
        covar_r = linear.LinearCF(n_dimensions=RV['n_r'])
        covar_s = lowrank.LowRankCF(n_dimensions=RV['n_sigma'])
        covar_o = fixed.FixedCF(n_dimensions=RV['n_r'])
        X = data.getX(standardized=False)
        Y = data.getY(standardized=False).T
        hyperparams,Ifilter,bounds = initialize.init('GPkronsum_LIN',Y.T,X,RV)
        covar_r.X = X
        covar_o.X = X
        covar_o._K = SP.eye(RV['N'])
        covar_s.X = hyperparams['X_s']
        covar_c.X = hyperparams['X_c']
        kgp_slow = gp_kronsum_naive.KronSumGP(covar_r=covar_r,covar_c=covar_c,covar_s=covar_s,covar_o=covar_o)
        kgp_slow.setData(Y=Y)

        # measure time
        signal.signal(signal.SIGALRM,handler)
        signal.alarm(time_out)
        try:
             t_start = time.clock()
             hyperparams_opt,lmltrain = opt.opt_hyper(kgp_slow,hyperparams,Ifilter=Ifilter,bounds=bounds,opts=opts)
             t_stop = time.clock()
示例#13
0
def index():
    r = url.initial_url()
    print(r)
    weather = initialize.init(r)
    return render_template("index.html", params=params, weather=weather)
示例#14
0
#  http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==================================================================================================

import logging

from initialize import init

try:
    from twitter.common import app
    app.on_initialization(lambda: init(app.name()),
                          description="Logging subsystem.")
except ImportError:
    # Do not require twitter.common.app
    pass

debug = logging.debug
info = logging.info
warning = logging.warning
error = logging.error
fatal = logging.fatal

__all__ = [
    'debug',
    'info',
    'warning',
示例#15
0
文件: __init__.py 项目: crnt/commons
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==================================================================================================

import logging

from initialize import init

try:
  from twitter.common import app
  app.on_initialization(
    lambda: init(app.name()),
    description="Logging subsystem.")
except ImportError:
  # Do not require twitter.common.app
  pass

debug = logging.debug
info = logging.info
warning = logging.warning
error = logging.error
fatal = logging.fatal

__all__ = [
  'debug',
  'info',
  'warning',
示例#16
0
num_trainset = X.shape[0]

alpha = 0.0001

# UPDATE THESE
num_class = 10
num_layers = 3
hidden = [784, 30, 10]  # No. of nodes in each layer
# UPDATE THESE

num_epochs = 10000
print num_trainset
num_batches = num_trainset / 10

out, net_in, net_in_bias, theta, error, dtheta, loss = initialize.init(
    X, num_layers, hidden, num_epochs)
#print theta[1]

# h = 0.02
# x_min, x_max = X[:, 0].min()-1, X[:, 0].max()+1
# y_min, y_max = X[:, 1].min()-1, X[:, 1].max()+1

# xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Z = np.c_[xx.ravel(), yy.ravel()]

for epoch in xrange(num_epochs):
    print epoch,
    for i in xrange(0, num_batches):

        if i == num_batches - 2:
示例#17
0
	fl = open('initFile.txt', 'w')
	fl.write('title: My Project\ndescription: My Project discription\n exclude:  Html  arxiv  CMakeFiles')
	fl.close()
	sys.exit()
#-----------------------------------------------------------

arg = ''
args = sys.argv
if(len(args) == 2): arg = args[1]
elif(len(args) == 1): arg = '.'
else: 
	print 'wrong argument: exiting'	
	sys.exit()

style.style()
dirList, title, description = initialize.init(arg)

writeTOC(dirList, arg)

for dirr in dirList:
	writeHeader(dirr)
	writeSource(dirr)
	writeFiles(dirr)

writeIndex(dirList)
writeMain(title, description)
writeBlank()

# table of content for each alphabet directory
al = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
for a in al: