示例#1
0
    def run_train_loop(self):

        params = init.TrainingParamInitialization()
        self.gan = CloudGAN(params)
        self.train_img, self.train_alpha, self.train_reflectance =\
            self.data_prepare.preprocess(self.gan.G_sample, self.gan.G_alpha, self.gan.G_relectance)
        self.validate_img, self.validate_alpha, self.validate_reflectance = \
            self.data_prepare.preprocess(self.gan.G_sample, self.gan.G_alpha,self.gan.G_relectance)

        print('build matting net')
        with tf.name_scope('train'):
            train_op = self.train_op(self.train_img, self.train_alpha,
                                     self.train_reflectance)
        with tf.name_scope('validate'):
            validate_op = self.validate_op(self.validate_img,
                                           self.validate_alpha,
                                           self.validate_reflectance,
                                           reuse=True)

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        self.load_checkpoints(sess)
        step = 0
        log_step = 50
        saver = tf.train.Saver()
        merge_op = tf.summary.merge_all()
        summary_writer = tf.summary.FileWriter(self.logdir, sess.graph)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord, sess=sess)
        if not os.path.exists('rst'):
            os.mkdir('rst')
        while step < self.iter_step:

            feed_dict = None

            self.gan.run_train(sess)
            X_mb = utils.get_batch(self.gan.data, self.batch_size,
                                   'cloudimage', self.img_size)
            Z_mb = utils.get_batch(self.gan.data, self.batch_size,
                                   'cloudimage', self.img_size)
            BG_mb = utils.get_batch(self.gan.data, self.batch_size,
                                    'background', self.img_size)
            feed_dict = {
                self.gan.X: X_mb,
                self.gan.Z: Z_mb,
                self.gan.BG: BG_mb
            }

            [_, train_loss, step] = sess.run(train_op, feed_dict=feed_dict)

            if np.mod(step, log_step) == 1:

                X_mb = utils.get_batch(self.gan.data, self.batch_size,
                                       'cloudimage', self.img_size)
                Z_mb = utils.get_batch(self.gan.data, self.batch_size,
                                       'cloudimage', self.img_size)
                BG_mb = utils.get_batch(self.gan.data, self.batch_size,
                                        'background', self.img_size)
                feed_dict = {
                    self.gan.X: X_mb,
                    self.gan.Z: Z_mb,
                    self.gan.BG: BG_mb
                }

                merges = [merge_op] + validate_op

                summary, image, alpha_image, reflectance_image, validate_loss = sess.run(
                    merges, feed_dict=feed_dict)

                summary_writer.add_summary(summary, step)
                print("step:%d,loss:%f,validate_loss:%f" %
                      (step, train_loss, validate_loss))
                misc.imsave('rst/' + str(step) + '_image.png', image)
                misc.imsave('rst/' + str(step) + '_alpha.png', alpha_image)
                misc.imsave('rst/' + str(step) + '_foreground.png',
                            reflectance_image)

            if np.mod(step, 500) == 1:
                saver.save(sess, os.path.join(self.model_path, 'model'), step)
示例#2
0
With this project, you can train a model to solve the following
inverse problems:
- on MNIST and CIFAR-10 datasets for separating superimposed images.
- image denoising on MNIST
- remove speckle and streak noise in CAPTCHAs
All the above tasks are trained w/ or w/o the help of pair-wise supervision.

"""

import tensorflow as tf
import tensorflow.contrib.slim as slim
import initializer as init

# All parameters used in this file
Params = init.TrainingParamInitialization()


def generator(Y, is_training):

    # define the number of filters in each conv layer
    mm = 64

    if Params.task_name in ['unmixing_mnist_mnist', 'denoising', 'captcha']:
        n_channels = 1
    else:
        n_channels = 3

    G_input_size = Params.G_input_size

    with tf.variable_scope('G_scope'):