示例#1
0
class Word2Vec:
    def __init__(self, input_file_name, output_file_name):
        self.output_file_name = output_file_name
        self.data = InputData(input_file_name, MIN_COUNT)
        self.model = SkipGramModel(self.data.word_count, EMB_DIMENSION)
        self.lr = LR
        self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr)

    def train(self):
        print("SkipGram Training......")
        pairs_count = self.data.evaluate_pairs_count(WINDOW_SIZE)
        print("pairs_count", pairs_count)
        batch_count = pairs_count / BATCH_SIZE
        print("batch_count", batch_count)
        process_bar = tqdm(range(int(batch_count)))
        for i in process_bar:
            pos_pairs = self.data.get_batch_pairs(BATCH_SIZE, WINDOW_SIZE)
            pos_w = [int(pair[0]) for pair in pos_pairs]
            pos_v = [int(pair[1]) for pair in pos_pairs]
            neg_v = self.data.get_negative_sampling(pos_pairs, NEG_COUNT)

            self.optimizer.zero_grad()
            loss = self.model.forward(pos_w, pos_v, neg_v)
            loss.backward()
            self.optimizer.step()

            if i * BATCH_SIZE % 100000 == 0:
                self.lr = self.lr * (1.0 - 1.0 * i / batch_count)
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = self.lr

        self.model.save_embedding(self.data.id2word_dict,
                                  self.output_file_name)
示例#2
0
class Word2Vec:
    def __init__(self, input_file_name, output_file_name):
        self.output_file_name = output_file_name
        self.data = InputData(input_file_name, MIN_COUNT)
        self.model = SkipGramModel(self.data.word_count, EMB_DIMENSION).cuda()
        self.lr = LR
        self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr)

    def train(self):
        #self.model.load_state_dict(torch.load("../results/skipgram_nge.pkl"))
        print("SkipGram Training......")
        pairs_count = self.data.evaluate_pairs_count(WINDOW_SIZE)
        print("pairs_count", pairs_count)
        batch_count = pairs_count / BATCH_SIZE
        print("batch_count", batch_count)
        process_bar = tqdm(range(int(5 * batch_count)))
        for i in process_bar:
            pos_pairs = self.data.get_batch_pairs(BATCH_SIZE, WINDOW_SIZE)
            pos_w = [int(pair[0]) for pair in pos_pairs]
            pos_v = [int(pair[1]) for pair in pos_pairs]
            neg_v = self.data.get_negative_sampling(pos_pairs, NEG_COUNT)
            pos_w = pos_w
            pos_v = pos_v
            neg_v = neg_v

            self.optimizer.zero_grad()
            loss = self.model.forward(pos_w, pos_v, neg_v)
            loss.backward()
            self.optimizer.step()
            process_bar.set_postfix(loss=loss.data)
            process_bar.update()
        torch.save(self.model.state_dict(), "../results/skipgram_nge.pkl")
        self.model.save_embedding(self.data.id2word_dict,
                                  self.output_file_name)
示例#3
0
class Word2Vec:
    def __init__(self, input_file_name, output_file_name):
        self.output_file_name = output_file_name
        self.data = InputData(input_file_name, MIN_COUNT)
        self.model = CBOWModel(self.data.word_count, EMB_DIMENSION).cuda()
        self.lr = LR
        self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr)

    def train(self):
        print("CBOW Training......")
        pairs_count = self.data.evaluate_pairs_count(WINDOW_SIZE)
        print("pairs_count", pairs_count)
        batch_count = pairs_count / BATCH_SIZE
        print("batch_count", batch_count)
        process_bar = tqdm(range(int(batch_count)))
        loss = -1
        for i in process_bar:
            pos_pairs = self.data.get_batch_pairs(BATCH_SIZE, WINDOW_SIZE)
            pos_u = [pair[0] for pair in pos_pairs]
            pos_w = [int(pair[1]) for pair in pos_pairs]
            neg_w = self.data.get_negative_sampling(pos_pairs, NEG_COUNT)

            self.optimizer.zero_grad()
            loss_now = self.model.forward(pos_u, pos_w, neg_w)
            if loss == -1:
                loss = loss_now.data.item()
            else:
                loss = 0.95 * loss + 0.05 * loss_now.data.item()
            loss_now.backward()
            self.optimizer.step()

            if i * BATCH_SIZE % 100000 == 0:
                self.lr = self.lr * (1.0 - 1.0 * i / batch_count)
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = self.lr
            process_bar.set_postfix(loss=loss)
            process_bar.update()

        self.model.save_embedding(self.data.id2word_dict,
                                  self.output_file_name)
示例#4
0
class Word2Vec:
    def __init__(self, input_file_name, output_file_name):
        self.output_file_name = output_file_name
        self.data = InputData(input_file_name, MIN_COUNT)
        self.model = CBOWModel(self.data.word_count, EMB_DIMENSION).cuda()
        self.lr = LR
        self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr)

    def train(self):
        for _ in range(1, EPOCH + 1):
            print("CBOW Training......")
            pairs_count = self.data.evaluate_pairs_count(WINDOW_SIZE)
            print("pairs_count", pairs_count)
            batch_count = int(np.ceil(pairs_count / BATCH_SIZE))
            print("batch_count", batch_count)
            process_bar = tqdm(range(int(batch_count)))
            # for _ in range(1, EPOCH + 1):
            for i in process_bar:
                pos_pairs = self.data.get_batch_pairs(BATCH_SIZE, WINDOW_SIZE)
                pos_u = [pair[0] for pair in pos_pairs]
                pos_w = [int(pair[1]) for pair in pos_pairs]
                neg_w = self.data.get_negative_sampling(pos_pairs, NEG_COUNT)

                self.optimizer.zero_grad()
                loss = self.model.forward(pos_u, pos_w, neg_w)
                loss.backward()
                self.optimizer.step()

                if i * BATCH_SIZE % 100000 == 0:
                    self.lr = self.lr * (1.0 - 1.0 * i / batch_count)
                    for param_group in self.optimizer.param_groups:
                        param_group['lr'] = self.lr
                process_bar.set_postfix(loss=loss.data)
                process_bar.update()
            print('\n')
        torch.save(self.model.state_dict(),
                   "../results/url_with_location_cbow_neg.pkl")
        self.model.save_embedding(self.data.id2word_dict,
                                  self.output_file_name)