def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs city = get_inputs( 'Would you like to see data for Chicago, New York, or Washington? \n', cities) #get whether the user wants to filter the date by month, day, both or not at all while True: date_filter = input( 'Would you like to filter the data by month, day, both or not at all? Type "none" for no time filter \n' ).lower() if date_filter == 'month': #get user input for month (all, january, february, ... , june) month = get_inputs( 'Which month? January, February, March, April, May, or June? \n', months) day = 'all' break elif date_filter == 'day': month = 'all' #get user input for day of week (all, monday, tuesday, ... sunday) day = get_inputs( 'Which day? Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday? \n', days) break elif date_filter == 'both': #get the user input for both month and day of week and filter the data by them month = get_inputs( 'Which month? January, February, March, April, May, or June? \n', months) day = get_inputs( 'Which day? Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday? \n', days) break elif date_filter == 'none': #use no filter for the data month = 'all' day = 'all' break else: print('Invalid entry') continue print('-' * 40) return city, month, day
def __init__(self, w, z): self.X_train_set, self.Y_train_set_n, self.X_valid_set, self.Y_valid_set_n, self.X_test_set,\ self.Y_test_set_n, self.Y_train_set_v, self.Y_valid_set_v, self.Y_test_set_v =\ inputs.get_inputs('mnist.pkl.gz') self.n_training_examples = self.X_train_set.shape[0] self.max_epochs = w self.batch_size = z self.w = {} self.w['conv_1'] = { 'weights': tf.Variable(tf.random_normal((5, 5, 1, 32))), 'biases': tf.Variable(tf.random_normal((1, 32))) } self.w['conv_2'] = { 'weights': tf.Variable(tf.random_normal((5, 5, 32, 64))), 'biases': tf.Variable(tf.random_normal((1, 64))) } self.w['fc_1'] = { 'weights': tf.Variable(tf.random_normal((7 * 7 * 64, 1024))), 'biases': tf.Variable(tf.random_normal((1, 1024))) } self.w['fc_2'] = { 'weights': tf.Variable(tf.random_normal((1024, 10))), 'biases': tf.Variable(tf.random_normal((1, 10))) }
def main(): while True: inp_dict = get_inputs() try: clear_dict = clear_inputs(inp_dict) except ValueError: print('________________________________') print('Value incorrect please try again') print('________________________________') continue else: final_list = filter_data(cards, clear_dict) final_str = show_item(final_list) print('\n'.join(final_str)) break
def build_model(self): # get a batch of inputs self.train_inputs, self.val_inputs = get_inputs(self) # get a batch of inputs self.placeholders = get_placeholders(self) # define a global step/iteration number self.global_step = tf.Variable(0, name="global_step", trainable=False) ## infer, and compute the loss # handle the tf complaint about no loss dummy_var = tf.Variable(0.0, name="dummy") self.loss = tf.identity(dummy_var-dummy_var) loss_dict, self.pred_cat, self.cat = self.inference(is_train=hyp.do_train, reuse=False) for loss in loss_dict.values(): self.loss = self.loss + loss self.loss += tf.reduce_sum(slim.losses.get_regularization_losses()) tf.summary.scalar('loss', self.loss) ## define a big summary op we can run self.summary = tf.summary.merge_all() ## define a saverloader self.saver = tf.train.Saver(max_to_keep=100)
childrenEncoderOutputs) decoderInputs = [attrCodeTensor, childrenCodeTensor] # Apply decoder on encoder outputs. childrenCodeActivated = childrenCodec.decode(decoderInputs) attrsCodeActivated = attributeCodec.decode(decoderInputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` trainer_model = Model( [*attributesEncoderInputs, *childrenEncoderInputs, *decoderInputs], [childrenCodeActivated, attrsCodeActivated]) # Get inputs. inputData = get_inputs(modelArgs) plot_model(trainer_model, to_file="plot.png") # Run training trainer_model.compile(optimizer='rmsprop', loss='categorical_crossentropy') trainer_model.fit([inputData.encoder_input_data, inputData.decoder_input_data], inputData.decoder_target_data, batch_size=modelArgs.batch_size, epochs=modelArgs.epochs, validation_split=0.2) # Save model saveModel(trainer_model, 't_s2s.json') with open("modelArgs.json", "w") as fp: json.dump(modelArgs, fp)
import os import inputs import pandas as pd user_inputs = inputs.get_inputs() strat_list = user_inputs['strategy'].split(",") # account for commas if ("all" in strat_list[0].lower()): directory_path = os.path.dirname(os.path.abspath(__file__)) new_path = os.path.join(directory_path, "stratlist.txt") strat_list.clear() with open(new_path) as f: # read from input.txt lines = f.readlines() for line in lines: strat_list.append(line.strip() + ".csv") f.close() csv_files = [] # index = 0 for csv in strat_list: csv_files.append(pd.read_csv(csv)) # index = index + 1 main_df = pd.concat(csv_files, axis=1) print(main_df) main_df.to_csv('sim.csv', index=False)
sampled_char = modelArgs.reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if (sampled_char == '\n' or len(decoded_sentence) > modelArgs.max_decoder_seq_length): stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, modelArgs.num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # Update states states_value = [h, c] return decoded_sentence # Get inputs. inputs = get_inputs(modelArgs) for seq_index in range(100): # Take one sequence (part of the training set) # for trying out decoding. input_seq = inputs.encoder_input_data[seq_index:seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', inputs.input_texts[seq_index].encode("utf-8")) print('Decoded sentence:', decoded_sentence.encode("utf-8"))
def main(): inp_dict = get_inputs() clear_dict = clear_inputs(inp_dict) final_list = filter_data(cards, clear_dict) pprint(final_list)
from keras.layers import Input, LSTM, Dense from keras.utils import plot_model from utils import saveModel from inputs import get_inputs # Build training args needed during training and also inference. trainArgs = AttrDict() trainArgs.batch_size = 64 # Batch size for training. trainArgs.epochs = 100 # Number of epochs to train for. trainArgs.latent_dim = 256 # Latent dimensionality of the encoding space. trainArgs.num_samples = 10000 # Number of samples to train on. # Path to the data txt file on disk. trainArgs.data_path = 'fra-eng/fra.txt' # Get inputs. inputs = get_inputs(trainArgs) # Define an input sequence and process it. encoder_inputs = Input(shape=(None, trainArgs.num_encoder_tokens)) encoder = LSTM(trainArgs.latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None, trainArgs.num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(trainArgs.latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs,