示例#1
0
    def _test_output_int8(self,
                          model,
                          x,
                          kind_in_graph=None,
                          kind_not_in_graph=None,
                          prec=None):
        modelName = model.__class__.__name__

        core.enable_auto_dnnl()
        core.enable_jit_opt()
        model = model.to(ipex.DEVICE).eval()
        x = x.to(ipex.DEVICE)
        x2 = x.clone()
        x3 = x.clone()

        script_fused_model = torch.jit.script(copy.deepcopy(model))
        trace_fused_model = torch.jit.trace(copy.deepcopy(model), x3)

        with torch.no_grad():
            # int8, native path
            int8_calibration(model, [x], "configure.json")
            int8_conf = ipex.AmpConf(torch.int8, "configure.json")
            with ipex.AutoMixPrecision(int8_conf):
                result = model(x)
            # int8, jit script path
            script_graph = script_fused_model.graph_for(x2)
            int8_calibration(script_fused_model, [x2], "configure.json")
            int8_conf = ipex.AmpConf(torch.int8, "configure.json")
            with ipex.AutoMixPrecision(int8_conf):
                fused_sresult = script_fused_model(x2)
            # int8, jit trace path
            trace_graph = trace_fused_model.graph_for(x3)
            int8_calibration(trace_fused_model, [x3], "configure.json")
            int8_conf = ipex.AmpConf(torch.int8, "configure.json")
            with ipex.AutoMixPrecision(int8_conf):
                fused_tresult = trace_fused_model(x3)
        os.remove('configure.json')
        self.assertEqual(fused_sresult, result, prec)
        self.assertEqual(fused_tresult, result, prec)

        # check if the fused node exists in the graph
        if kind_in_graph is not None:
            self.assertTrue(
                any(n.kind() == kind_in_graph for n in script_graph.nodes()))
            self.assertTrue(
                any(n.kind() == kind_in_graph for n in trace_graph.nodes()))
        # check if certain node does not exist in the graph
        if kind_not_in_graph is not None:
            self.assertTrue(
                all(n.kind() != kind_not_in_graph
                    for n in script_graph.nodes()))
            self.assertTrue(
                all(n.kind() != kind_not_in_graph
                    for n in trace_graph.nodes()))
示例#2
0
    def compare_fp32_int8(self, model, x):
        conf = ipex.AmpConf(torch.int8)
        with ipex.AutoMixPrecision(conf, running_mode='calibration'):
            ref = model(x)
        conf.save('configure.json')

        conf = ipex.AmpConf(torch.int8, 'configure.json')
        with ipex.AutoMixPrecision(conf, running_mode='inference'):
            y = model(x)

        self.assertTrue(ipex.core.is_int8_dil_tensor(y))
        self.assertEqual(ref, y, prec=0.1)
        os.remove('configure.json')
def int8_calibration(model, data, dir):
    conf = ipex.AmpConf(torch.int8)
    with torch.no_grad():
        for x in data:
            with ipex.AutoMixPrecision(conf, running_mode="calibration"):
                model(x)
    conf.save(dir)
def run_linear(auto_mix_conf=None):
    for i in range(3):
        if auto_mix_conf != None:
            with ipex.AutoMixPrecision(auto_mix_conf):
                LL(get_input())
        else:
            LL(get_input())
示例#5
0
文件: main.py 项目: mbasnet1/lpot
def validate(val_loader, model, criterion, args, ipex_config_path=None):
    batch_time = AverageMeter('Time', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5,
                             prefix='Test: ')

    # switch to evaluate mode
    model.eval()
    if args.ipex:
        if ipex_config_path is not None:
            conf = ipex.AmpConf(torch.int8, configure_file=ipex_config_path)
        else:
            conf = ipex.AmpConf(None)

    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            if i >= args.warmup_iter:
                start = time.time()
            if args.gpu is not None:
                input = input.cuda(args.gpu, non_blocking=True)
                target = target.cuda(args.gpu, non_blocking=True)

            # compute output
            if args.ipex:
                with ipex.AutoMixPrecision(conf, running_mode='inference'):
                    output = model(input.to(ipex.DEVICE))
                target = target.to(ipex.DEVICE)
            else:
                output = model(input)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), input.size(0))
            top1.update(acc1[0], input.size(0))
            top5.update(acc5[0], input.size(0))

            # measure elapsed time
            if i >= args.warmup_iter:
                batch_time.update(time.time() - start)

            if i % args.print_freq == 0:
                progress.print(i)

            if args.iter > 0 and i >= (args.warmup_iter + args.iter - 1):
                break

        print('Batch size = %d' % args.batch_size)
        if args.batch_size == 1:
            print('Latency: %.3f ms' % (batch_time.avg * 1000))
        print('Throughput: %.3f images/sec' % (args.batch_size / batch_time.avg))

        # TODO: this should also be done with the ProgressMeter
        print('Accuracy: {top1:.5f} Accuracy@5 {top5:.5f}'
              .format(top1=(top1.avg / 100), top5=(top5.avg / 100)))

    return top1.avg
    def _lstm_compare_fp32_int8(self, model, *args):
        conf = ipex.AmpConf(torch.int8)
        with ipex.AutoMixPrecision(conf, running_mode='calibration'):
            with torch.no_grad():
                ref, hy_ref = model(*args)
        conf.save('configure.json')

        conf = ipex.AmpConf(torch.int8, 'configure.json')
        with ipex.AutoMixPrecision(conf, running_mode='inference'):
            with torch.no_grad():
                y, hy = model(*args)

        self.assertTrue(ipex.core.is_int8_dil_tensor(y))

        self.assertEqual(ref, y, prec=0.1)
        self.assertEqual(hy_ref[0], hy[0], prec=0.01)
        self.assertEqual(hy_ref[1], hy[1], prec=0.01)
        os.remove('configure.json')
示例#7
0
    def test_quantization_status(self):
        x = torch.randn((4, 5), dtype=torch.float32).to(device)
        model = torch.nn.Linear(5, 10, bias=True).float().to(device)

        model1 = copy.deepcopy(model)
        x1 = x.clone()
        conf = ipex.AmpConf(torch.int8)
        with ipex.AutoMixPrecision(conf, running_mode='calibration'):
            ref = model1(x1)
        conf.save('configure.json')
        conf = ipex.AmpConf(torch.int8, 'configure.json')
        with ipex.AutoMixPrecision(conf, running_mode='inference'):
            y = model1(x1)
        self.assertTrue(ipex.core.is_int8_dil_tensor(y))
        jsonFile = open('configure.json', 'r')
        data = json.load(jsonFile)
        jsonFile.close()
        self.assertTrue(data[0]['quantized'])

        # check configure's change can works for calibration step,
        # we need use origin model, because after running inference
        # step, the model has beem quantized, after change quantized
        # to False, the output should be fp32, i.e. not be quantized.
        data[0]['quantized'] = False
        jsonFile = open('configure.json', "w+")
        jsonFile.write(json.dumps(data))
        jsonFile.close()
        # use user's changed configure.
        model2 = copy.deepcopy(model)
        x2 = x.clone()
        conf = ipex.AmpConf(torch.int8, 'configure.json')
        with ipex.AutoMixPrecision(conf, running_mode='calibration'):
            ref = model2(x2)
        conf.save('configure.json')
        conf = ipex.AmpConf(torch.int8, 'configure.json')
        jsonFile = open('configure.json', 'r')
        data = json.load(jsonFile)
        jsonFile.close()
        self.assertFalse(data[0]['quantized'])

        with ipex.AutoMixPrecision(conf, running_mode='inference'):
            y = model2(x2)
        self.assertTrue(ipex.core.is_fp32_dil_tensor(y))
        os.remove('configure.json')
示例#8
0
    def test_quantization_status(self):
        x = torch.randn((4, 5), dtype=torch.float32).to(device)
        model = torch.nn.Linear(5, 10, bias=True).float().to(device)

        conf = ipex.AmpConf(torch.int8)
        with ipex.AutoMixPrecision(conf, running_mode='calibration'):
            ref = model(x)
        conf.save('configure.json')
        conf = ipex.AmpConf(torch.int8, 'configure.json')
        with ipex.AutoMixPrecision(conf, running_mode='inference'):
            y = model(x)
        self.assertTrue(ipex.core.is_int8_dil_tensor(y))
        jsonFile = open('configure.json', 'r')
        data = json.load(jsonFile)
        jsonFile.close()
        self.assertTrue(data[0]['quantized'])

        # check configure's change can works for calibration step,
        # need get fp32 tensor for quantized=False.
        data[0]['quantized'] = False
        jsonFile = open('configure.json', "w+")
        jsonFile.write(json.dumps(data))
        jsonFile.close()
        # use user's changed configure.
        conf = ipex.AmpConf(torch.int8, 'configure.json')
        with ipex.AutoMixPrecision(conf, running_mode='calibration'):
            ref = model(x)
        conf.save('configure.json')
        conf = ipex.AmpConf(torch.int8, 'configure.json')
        jsonFile = open('configure.json', 'r')
        data = json.load(jsonFile)
        jsonFile.close()
        self.assertFalse(data[0]['quantized'])

        with ipex.AutoMixPrecision(conf, running_mode='inference'):
            y = model(x)
        self.assertTrue(ipex.core.is_fp32_dil_tensor(y))
        os.remove('configure.json')