def get_parameter_function(cls, parameter_function_id=''): ''' Preferred client-side class method for constructing a parameter function ''' dms_cli = DatasetManagementServiceClient() pf_res = dms_cli.read_parameter_function(parameter_function_id=parameter_function_id) pf = AbstractFunction.load(pf_res.parameter_function) pf._identifier = pf._id return pf
def get_parameter_function(cls, parameter_function_id=''): ''' Preferred client-side class method for constructing a parameter function ''' dms_cli = DatasetManagementServiceClient() pf_res = dms_cli.read_parameter_function( parameter_function_id=parameter_function_id) pf = AbstractFunction.load(pf_res.parameter_function) pf._identifier = pf._id return pf
class DatasetManagementIntTest(IonIntegrationTestCase): def setUp(self): self._start_container() self.container.start_rel_from_url('res/deploy/r2deploy.yml') self.resource_registry = ResourceRegistryServiceClient() self.dataset_management = DatasetManagementServiceClient() def test_dataset_crud(self): pdict_id = self.dataset_management.read_parameter_dictionary_by_name( 'ctd_parsed_param_dict', id_only=True) dataset = Dataset(name='ctd_dataset') dataset_id = self.dataset_management.create_dataset( dataset, parameter_dictionary_id=pdict_id) ds_obj = self.dataset_management.read_dataset(dataset_id) self.assertEquals(ds_obj.name, 'ctd_dataset') ds_obj.name = 'something different' self.dataset_management.update_dataset(ds_obj) ds_obj2 = self.dataset_management.read_dataset(dataset_id) self.assertEquals(ds_obj.name, ds_obj2.name) def test_context_crud(self): context_ids = self.create_contexts() context_id = context_ids.pop() ctxt = self.dataset_management.read_parameter_context(context_id) context = DatasetManagementService.get_coverage_parameter(ctxt) self.assertIsInstance(context, CoverageParameterContext) self.dataset_management.delete_parameter_context(context_id) with self.assertRaises(NotFound): self.dataset_management.read_parameter_context(context_id) def test_pfunc_crud(self): contexts, funcs = self.create_pfuncs() context_ids = [context_id for context_id in contexts.itervalues()] pdict_id = self.dataset_management.create_parameter_dictionary( name='functional_pdict', parameter_context_ids=context_ids, temporal_context='time') self.addCleanup(self.dataset_management.delete_parameter_dictionary, pdict_id) expr_id = funcs['CONDWAT_L1'] expr = self.dataset_management.read_parameter_function(expr_id) func_class = DatasetManagementService.get_coverage_function(expr) self.assertIsInstance(func_class, NumexprFunction) def test_pdict_crud(self): context_ids = self.create_contexts() pdict_res_id = self.dataset_management.create_parameter_dictionary( name='pdict1', parameter_context_ids=context_ids, temporal_context='time') pdict_contexts = self.dataset_management.read_parameter_contexts( parameter_dictionary_id=pdict_res_id, id_only=True) pdict = DatasetManagementService.get_parameter_dictionary(pdict_res_id) self.assertIsInstance(pdict, ParameterDictionary) self.assertTrue('time_test' in pdict) self.assertEquals(pdict.identifier, pdict_res_id) self.assertEquals(set(pdict_contexts), set(context_ids)) self.dataset_management.delete_parameter_dictionary( parameter_dictionary_id=pdict_res_id) with self.assertRaises(NotFound): self.dataset_management.read_parameter_dictionary( parameter_dictionary_id=pdict_res_id) def create_contexts(self): context_ids = [] cond = ParameterContext(name='condictivity_test', parameter_type='quantity', value_encoding='float32', units='1', fill_value=0) context_ids.append(self.dataset_management.create_parameter(cond)) pres = ParameterContext(name='pressure_test', parameter_type='quantity', value_encoding='float32', units='Pa', fill_value=0) context_ids.append(self.dataset_management.create_parameter(pres)) sal = ParameterContext(name='salinity_test', parameter_type='quantity', value_encoding='float32', units='psu', fill_value=0) context_ids.append(self.dataset_management.create_parameter(sal)) temp = ParameterContext(name='temp_test', parameter_type='quantity', value_encoding='float32', units='degree_C', fill_value=0) context_ids.append(self.dataset_management.create_parameter(temp)) time_test = ParameterContext(name='time_test', parameter_type='quantity', value_encoding='float32', units='seconds since 1970-01-01', fill_value=0) context_ids.append(self.dataset_management.create_parameter(time_test)) return context_ids def create_pfuncs(self): contexts = {} funcs = {} time_ = ParameterContext(name='TIME', parameter_type='quantity', value_encoding='float32', units='seconds since 1900-01-01', fill_value=0) t_ctxt_id = self.dataset_management.create_parameter(time_) contexts['TIME'] = t_ctxt_id lat = ParameterContext(name='LAT', parameter_type='sparse', value_encoding='float32', units='degrees_north', fill_value=-9999.) lat_ctxt_id = self.dataset_management.create_parameter(lat) contexts['LAT'] = lat_ctxt_id lon = ParameterContext(name='LON', parameter_type="sparse", value_encoding='float32', units='degrees_east', fill_value=-9999) lon_ctxt_id = self.dataset_management.create_parameter(lon) contexts['LON'] = lon_ctxt_id # Independent Parameters # Temperature - values expected to be the decimal results of conversion from hex temp = ParameterContext(name='TEMPWAT_L0', parameter_type='quantity', value_encoding='float32', units='deg_C') temp_ctxt_id = self.dataset_management.create_parameter(temp) contexts['TEMPWAT_L0'] = temp_ctxt_id # Conductivity - values expected to be the decimal results of conversion from hex cond = ParameterContext(name='CONDWAT_L0', parameter_type='quantity', value_encoding='float32', units='S m-1') cond_ctxt_id = self.dataset_management.create_parameter(cond) contexts['CONDWAT_L0'] = cond_ctxt_id # Pressure - values expected to be the decimal results of conversion from hex press = ParameterContext(name='PRESWAT_L0', parameter_type='quantity', value_encoding='float32', units='dbar') press_ctxt_id = self.dataset_management.create_parameter(press) contexts['PRESWAT_L0'] = press_ctxt_id # Dependent Parameters # TEMPWAT_L1 = (TEMPWAT_L0 / 10000) - 10 tl1_func = '(T / 10000) - 10' tempwat_f = ParameterFunction(name='TEMPWAT_L1', function_type=PFT.NUMEXPR, function=tl1_func, args=['T']) expr_id = self.dataset_management.create_parameter_function(tempwat_f) funcs['TEMPWAT_L1'] = expr_id tl1_pmap = {'T': 'TEMPWAT_L0'} tempL1 = ParameterContext(name='TEMPWAT_L1', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=tl1_pmap, value_encoding='float32', units='deg_C') tempL1_ctxt_id = self.dataset_management.create_parameter(tempL1) contexts['TEMPWAT_L1'] = tempL1_ctxt_id # CONDWAT_L1 = (CONDWAT_L0 / 100000) - 0.5 cl1_func = '(C / 100000) - 0.5' condwat_f = ParameterFunction(name='CONDWAT_L1', function_type=PFT.NUMEXPR, function=cl1_func, args=['C']) expr_id = self.dataset_management.create_parameter_function(condwat_f) funcs['CONDWAT_L1'] = expr_id cl1_pmap = {'C': 'CONDWAT_L0'} condL1 = ParameterContext(name='CONDWAT_L1', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=cl1_pmap, value_encoding='float32', units='S m-1') condL1_ctxt_id = self.dataset_management.create_parameter(condL1) contexts['CONDWAT_L1'] = condL1_ctxt_id # Equation uses p_range, which is a calibration coefficient - Fixing to 679.34040721 # PRESWAT_L1 = (PRESWAT_L0 * p_range / (0.85 * 65536)) - (0.05 * p_range) pl1_func = '(P * p_range / (0.85 * 65536)) - (0.05 * p_range)' preswat_f = ParameterFunction(name='PRESWAT_L1', function_type=PFT.NUMEXPR, function=pl1_func, args=['P', 'p_range']) expr_id = self.dataset_management.create_parameter_function(preswat_f) funcs['PRESWAT_L1'] = expr_id pl1_pmap = {'P': 'PRESWAT_L0', 'p_range': 679.34040721} presL1 = ParameterContext(name='PRESWAT_L1', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=pl1_pmap, value_encoding='float32', units='dbar') presL1_ctxt_id = self.dataset_management.create_parameter(presL1) contexts['PRESWAT_L1'] = presL1_ctxt_id # A magic function that may or may not exist actually forms the line below at runtime. cond_f = ParameterFunction(name='condwat10', function_type=PFT.NUMEXPR, function='C*10', args=['C']) expr_id = self.dataset_management.create_parameter_function(cond_f) cond10 = ParameterContext(name='c10', parameter_type='function', parameter_function_id=expr_id, parameter_function_map={'C': 'CONDWAT_L1'}, value_encoding='float32', units='1') cond10_id = self.dataset_management.create_parameter(cond10) contexts['C10'] = cond10_id # Density & practical salinity calucluated using the Gibbs Seawater library - available via python-gsw project: # https://code.google.com/p/python-gsw/ & http://pypi.python.org/pypi/gsw/3.0.1 # PRACSAL = gsw.SP_from_C((CONDWAT_L1 * 10), TEMPWAT_L1, PRESWAT_L1) owner = 'gsw' sal_func = 'SP_from_C' sal_arglist = ['C', 't', 'p'] pracsal_f = ParameterFunction(name='PRACSAL', function_type=PFT.PYTHON, owner=owner, function=sal_func, args=sal_arglist) expr_id = self.dataset_management.create_parameter_function(pracsal_f) funcs['PRACSAL'] = expr_id sal_pmap = {'C': 'c10', 't': 'TEMPWAT_L1', 'p': 'PRESWAT_L1'} sal_ctxt = ParameterContext(name='PRACSAL', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=sal_pmap, value_encoding='float32', units='g kg-1') sal_ctxt_id = self.dataset_management.create_parameter(sal_ctxt) contexts['PRACSAL'] = sal_ctxt_id # absolute_salinity = gsw.SA_from_SP(PRACSAL, PRESWAT_L1, longitude, latitude) # conservative_temperature = gsw.CT_from_t(absolute_salinity, TEMPWAT_L1, PRESWAT_L1) # DENSITY = gsw.rho(absolute_salinity, conservative_temperature, PRESWAT_L1) return contexts, funcs def test_verify_contexts(self): pdict_id = self.dataset_management.read_parameter_dictionary_by_name( name='ctd_parsed_param_dict', id_only=True) pcontexts = self.dataset_management.read_parameter_contexts( parameter_dictionary_id=pdict_id) for pcontext in pcontexts: self.assertTrue('fill_value' in pcontext) self.assertTrue('reference_urls' in pcontext) self.assertTrue('internal_name' in pcontext) self.assertTrue('display_name' in pcontext) self.assertTrue('standard_name' in pcontext) self.assertTrue('ooi_short_name' in pcontext) self.assertTrue('description' in pcontext) self.assertTrue('precision' in pcontext)
class DatasetManagementIntTest(IonIntegrationTestCase): def setUp(self): self._start_container() self.container.start_rel_from_url('res/deploy/r2deploy.yml') self.resource_registry = ResourceRegistryServiceClient() self.dataset_management = DatasetManagementServiceClient() def test_dataset_crud(self): pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True) tdom, sdom = time_series_domain() dataset_id = self.dataset_management.create_dataset(name='ctd_dataset', parameter_dictionary_id=pdict_id, spatial_domain=sdom.dump(), temporal_domain=tdom.dump()) ds_obj = self.dataset_management.read_dataset(dataset_id) self.assertEquals(ds_obj.name, 'ctd_dataset') ds_obj.name = 'something different' self.dataset_management.update_dataset(ds_obj) ds_obj2 = self.dataset_management.read_dataset(dataset_id) self.assertEquals(ds_obj.name, ds_obj2.name) def test_context_crud(self): context_ids = self.create_contexts() context_id = context_ids.pop() ctxt = self.dataset_management.read_parameter_context(context_id) context = DatasetManagementService.get_coverage_parameter(ctxt) self.assertIsInstance(context, CoverageParameterContext) self.dataset_management.delete_parameter_context(context_id) with self.assertRaises(NotFound): self.dataset_management.read_parameter_context(context_id) def test_pfunc_crud(self): contexts, funcs = self.create_pfuncs() context_ids = [context_id for context_id in contexts.itervalues()] pdict_id = self.dataset_management.create_parameter_dictionary(name='functional_pdict', parameter_context_ids=context_ids, temporal_context='time') self.addCleanup(self.dataset_management.delete_parameter_dictionary, pdict_id) expr_id = funcs['CONDWAT_L1'] expr = self.dataset_management.read_parameter_function(expr_id) func_class = DatasetManagementService.get_coverage_function(expr) self.assertIsInstance(func_class, NumexprFunction) def test_pdict_crud(self): context_ids = self.create_contexts() pdict_res_id = self.dataset_management.create_parameter_dictionary(name='pdict1', parameter_context_ids=context_ids, temporal_context='time') pdict_contexts = self.dataset_management.read_parameter_contexts(parameter_dictionary_id=pdict_res_id, id_only=True) pdict = DatasetManagementService.get_parameter_dictionary(pdict_res_id) self.assertIsInstance(pdict, ParameterDictionary) self.assertTrue('time_test' in pdict) self.assertEquals(pdict.identifier, pdict_res_id) self.assertEquals(set(pdict_contexts), set(context_ids)) self.dataset_management.delete_parameter_dictionary(parameter_dictionary_id=pdict_res_id) with self.assertRaises(NotFound): self.dataset_management.read_parameter_dictionary(parameter_dictionary_id=pdict_res_id) def create_contexts(self): context_ids = [] cond = ParameterContext(name='condictivity_test', parameter_type='quantity', value_encoding='float32', units='1', fill_value=0) context_ids.append(self.dataset_management.create_parameter(cond)) pres = ParameterContext(name='pressure_test', parameter_type='quantity', value_encoding='float32', units='Pa', fill_value=0) context_ids.append(self.dataset_management.create_parameter(pres)) sal = ParameterContext(name='salinity_test', parameter_type='quantity', value_encoding='float32', units='psu', fill_value=0) context_ids.append(self.dataset_management.create_parameter(sal)) temp = ParameterContext(name='temp_test', parameter_type='quantity', value_encoding='float32', units='degree_C', fill_value=0) context_ids.append(self.dataset_management.create_parameter(temp)) time_test = ParameterContext(name='time_test', parameter_type='quantity', value_encoding='float32', units='seconds since 1970-01-01', fill_value=0) context_ids.append(self.dataset_management.create_parameter(time_test)) return context_ids def create_pfuncs(self): contexts = {} funcs = {} time_ = ParameterContext(name='TIME', parameter_type='quantity', value_encoding='float32', units='seconds since 1900-01-01', fill_value=0) t_ctxt_id = self.dataset_management.create_parameter(time_) contexts['TIME'] = t_ctxt_id lat = ParameterContext(name='LAT', parameter_type='sparse', value_encoding='float32', units='degrees_north', fill_value=-9999.) lat_ctxt_id = self.dataset_management.create_parameter(lat) contexts['LAT'] = lat_ctxt_id lon = ParameterContext(name='LON', parameter_type="sparse", value_encoding='float32', units='degrees_east', fill_value=-9999) lon_ctxt_id = self.dataset_management.create_parameter(lon) contexts['LON'] = lon_ctxt_id # Independent Parameters # Temperature - values expected to be the decimal results of conversion from hex temp = ParameterContext(name='TEMPWAT_L0', parameter_type='quantity', value_encoding='float32', units='deg_C') temp_ctxt_id = self.dataset_management.create_parameter(temp) contexts['TEMPWAT_L0'] = temp_ctxt_id # Conductivity - values expected to be the decimal results of conversion from hex cond = ParameterContext(name='CONDWAT_L0', parameter_type='quantity', value_encoding='float32', units='S m-1') cond_ctxt_id = self.dataset_management.create_parameter(cond) contexts['CONDWAT_L0'] = cond_ctxt_id # Pressure - values expected to be the decimal results of conversion from hex press = ParameterContext(name='PRESWAT_L0', parameter_type='quantity', value_encoding='float32', units='dbar') press_ctxt_id = self.dataset_management.create_parameter(press) contexts['PRESWAT_L0'] = press_ctxt_id # Dependent Parameters # TEMPWAT_L1 = (TEMPWAT_L0 / 10000) - 10 tl1_func = '(T / 10000) - 10' tempwat_f = ParameterFunction(name='TEMPWAT_L1', function_type=PFT.NUMEXPR, function=tl1_func, args=['T']) expr_id = self.dataset_management.create_parameter_function(tempwat_f) funcs['TEMPWAT_L1'] = expr_id tl1_pmap = {'T': 'TEMPWAT_L0'} tempL1 = ParameterContext(name='TEMPWAT_L1', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=tl1_pmap, value_encoding='float32', units='deg_C') tempL1_ctxt_id = self.dataset_management.create_parameter(tempL1) contexts['TEMPWAT_L1'] = tempL1_ctxt_id # CONDWAT_L1 = (CONDWAT_L0 / 100000) - 0.5 cl1_func = '(C / 100000) - 0.5' condwat_f = ParameterFunction(name='CONDWAT_L1', function_type=PFT.NUMEXPR, function=cl1_func, args=['C']) expr_id = self.dataset_management.create_parameter_function(condwat_f) funcs['CONDWAT_L1'] = expr_id cl1_pmap = {'C': 'CONDWAT_L0'} condL1 = ParameterContext(name='CONDWAT_L1', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=cl1_pmap, value_encoding='float32', units='S m-1') condL1_ctxt_id = self.dataset_management.create_parameter(condL1) contexts['CONDWAT_L1'] = condL1_ctxt_id # Equation uses p_range, which is a calibration coefficient - Fixing to 679.34040721 # PRESWAT_L1 = (PRESWAT_L0 * p_range / (0.85 * 65536)) - (0.05 * p_range) pl1_func = '(P * p_range / (0.85 * 65536)) - (0.05 * p_range)' preswat_f = ParameterFunction(name='PRESWAT_L1', function_type=PFT.NUMEXPR, function=pl1_func, args=['P', 'p_range']) expr_id = self.dataset_management.create_parameter_function(preswat_f) funcs['PRESWAT_L1'] = expr_id pl1_pmap = {'P': 'PRESWAT_L0', 'p_range': 679.34040721} presL1 = ParameterContext(name='PRESWAT_L1', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=pl1_pmap, value_encoding='float32', units='dbar') presL1_ctxt_id = self.dataset_management.create_parameter(presL1) contexts['PRESWAT_L1'] = presL1_ctxt_id # A magic function that may or may not exist actually forms the line below at runtime. cond_f = ParameterFunction(name='condwat10', function_type=PFT.NUMEXPR, function='C*10', args=['C']) expr_id = self.dataset_management.create_parameter_function(cond_f) cond10 = ParameterContext(name='c10', parameter_type='function', parameter_function_id=expr_id, parameter_function_map={'C':'CONDWAT_L1'}, value_encoding='float32', units='1') cond10_id = self.dataset_management.create_parameter(cond10) contexts['C10'] = cond10_id # Density & practical salinity calucluated using the Gibbs Seawater library - available via python-gsw project: # https://code.google.com/p/python-gsw/ & http://pypi.python.org/pypi/gsw/3.0.1 # PRACSAL = gsw.SP_from_C((CONDWAT_L1 * 10), TEMPWAT_L1, PRESWAT_L1) owner = 'gsw' sal_func = 'SP_from_C' sal_arglist = ['C', 't', 'p'] pracsal_f = ParameterFunction(name='PRACSAL', function_type=PFT.PYTHON, owner=owner, function=sal_func, args=sal_arglist) expr_id = self.dataset_management.create_parameter_function(pracsal_f) funcs['PRACSAL'] = expr_id sal_pmap = {'C': 'c10', 't': 'TEMPWAT_L1', 'p': 'PRESWAT_L1'} sal_ctxt = ParameterContext(name='PRACSAL', parameter_type='function', parameter_function_id=expr_id, parameter_function_map=sal_pmap, value_encoding='float32', units='g kg-1') sal_ctxt_id = self.dataset_management.create_parameter(sal_ctxt) contexts['PRACSAL'] = sal_ctxt_id # absolute_salinity = gsw.SA_from_SP(PRACSAL, PRESWAT_L1, longitude, latitude) # conservative_temperature = gsw.CT_from_t(absolute_salinity, TEMPWAT_L1, PRESWAT_L1) # DENSITY = gsw.rho(absolute_salinity, conservative_temperature, PRESWAT_L1) return contexts, funcs def test_verify_contexts(self): pdict_id = self.dataset_management.read_parameter_dictionary_by_name(name='ctd_parsed_param_dict', id_only=True) pcontexts = self.dataset_management.read_parameter_contexts(parameter_dictionary_id=pdict_id) for pcontext in pcontexts: self.assertTrue('fill_value' in pcontext) self.assertTrue('reference_urls' in pcontext) self.assertTrue('internal_name' in pcontext) self.assertTrue('display_name' in pcontext) self.assertTrue('standard_name' in pcontext) self.assertTrue('ooi_short_name' in pcontext) self.assertTrue('description' in pcontext) self.assertTrue('precision' in pcontext)