def _set_measurement_deviations(self): self._measurement_deviations = ci.vertcat([ \ ci.vec(self._discretization.measurements) - \ self._measurement_data_vectorized + \ ci.vec(self._discretization.optimization_variables["V"]) ])
def _set_measurement_deviations(self): self._measurement_deviations = ci.vertcat([ \ ci.vec(self._measurements_controls_applied) - \ self._measurement_data_vectorized + \ ci.vec(self._discretization.optimization_variables["V"]) ])
def _set_measurement_data(self): # The DOE problem does not depend on actual measurement values, # the measurement deviations are only needed to set up the objective; # therefore, dummy-values for the measurements can be used # (see issue #7 for further information) measurement_data = np.zeros((self._discretization.system.nphi, \ self._discretization.number_of_intervals + 1)) self._measurement_data_vectorized = ci.vec(measurement_data)
def _set_measurement_data(self, ydata): measurement_data = inputchecks.check_measurement_data(ydata, \ self._discretization.system.nphi, \ self._discretization.number_of_intervals + 1) self._measurement_data_vectorized = ci.vec(measurement_data)