def init(): MyDebugger.pre_fix = os.path.join(MyDebugger.pre_fix, "debug") debugger = MyDebugger(f"region_tiling", fix_rand_seed=config.rand_seed, save_print_to_file=False) plotter = Plotter() return debugger, plotter
def show_all_onering_neibors(): # Driver code MyDebugger.pre_fix = os.path.join(MyDebugger.pre_fix, "debug") debugger = MyDebugger(f"gen_tile_graph_{config.env_name}", fix_rand_seed=0) plotter = Plotter() data_env = config.environment result_tiles = [] align_tags = [] for base_tile in data_env.proto_tiles: for align_tile in data_env.proto_tiles: neighbour_tiles, align_tag = get_all_tiles(base_tile, align_tile, integer_align=True) for i in range(len(neighbour_tiles)): plotter.draw_contours( debugger.file_path(f"{align_tag[i]}.png"), [ base_tile.get_plot_attribute(), neighbour_tiles[i].get_plot_attribute() ])
def draw_solution(self, painter: QPainter): tiles = self.current_best_solution.get_selected_tiles() painter.setPen(self.pens[solution_color]) painter.setBrush(self.brushes[solution_color]) scale, translation = self._get_scale_translation(False) polygons = [ Plotter.create_polygon( np.array(t.exterior.coords) * scale + translation) for t in tiles ] for p in polygons: painter.drawPolygon(p)
def draw_grid(self, scale, translation): grid_painter = QPainter(self.pixmap) grid_painter.setRenderHint(QPainter.Antialiasing) grid_painter.setRenderHint(QPainter.SmoothPixmapTransform) ############ Draw grids ############################# grid_painter.setPen(self.grid_pen) polygons = [ Plotter.create_polygon( np.array(t.tile_poly.exterior.coords) * scale + translation) for t in self.complete_graph.tiles ] for p in polygons: grid_painter.drawPolygon(p) self.need_draw_grid = False
import os from inputs import config from solver.ml_solver.trainer import Trainer import torch from solver.ml_solver.ml_solver import ML_Solver import numpy as np from graph_networks.networks.TilinGNN import TilinGNN device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if __name__ == "__main__": MyDebugger.pre_fix = os.path.join(MyDebugger.pre_fix, "debug") debugger = MyDebugger(f"training_{config.experiment_id}", fix_rand_seed=config.rand_seed, save_print_to_file=False) plotter = Plotter() data_env = config.environment data_env.load_complete_graph(config.complete_graph_size) #### Network network = TilinGNN( adj_edge_features_dim=data_env.complete_graph.total_feature_dim, network_depth=config.network_depth, network_width=config.network_width).to(device) ## solver ml_solver = ML_Solver(debugger, device, data_env.complete_graph, network, num_prob_maps=1)