def _compute_explanations(self, local: bool, data: Any): """Compute explanations using MimicWrapper. :param local: True if local explanations are requested and False otherwise. :type local: bool :param data: The data point(s) for which the explanations need to be generated. :type data: Any :return: The computed explanations. :rtype: Any """ if self._classes is not None: model_task = ModelTask.Classification else: model_task = ModelTask.Regression explainer = MimicExplainer( self._model, self._initialization_examples, self._surrogate_model, features=self._features, model_task=model_task, classes=self._classes, categorical_features=self._categorical_features) return explainer.explain_global(data, include_local=local)
def test_json_serialize_mimic_no_features(self, iris, iris_svm_model): explainer = MimicExplainer( iris_svm_model, iris[DatasetConstants.X_TRAIN], LGBMExplainableModel, max_num_of_augmentations=10, classes=iris[DatasetConstants.CLASSES].tolist()) explanation = explainer.explain_global() verify_serialization(explanation)
def compute(self): """Creates an explanation by running the explainer on the model.""" if self._is_run: return model_task = ModelTask.Unknown explainer = MimicExplainer(self._model, self._initialization_examples, self._surrogate_model, features=self._features, model_task=model_task, classes=self._classes) self._explanation = explainer.explain_global(self._evaluation_examples)
def create_explainer(model, x_train, **kwargs): return MimicExplainer( model, x_train, explainable_model, explainable_model_args=explainable_model_args.copy(), **kwargs)
def create_explainer(model, x_train, **kwargs): return MimicExplainer( model, x_train, explainable_model, max_num_of_augmentations=10, explainable_model_args=explainable_model_args.copy(), **kwargs)
def compute(self): """Creates an explanation by running the explainer on the model.""" if not self._is_added: return if self._is_run: return if self._classes is not None: model_task = ModelTask.Classification else: model_task = ModelTask.Regression explainer = MimicExplainer( self._model, self._initialization_examples, self._surrogate_model, features=self._features, model_task=model_task, classes=self._classes, categorical_features=self._categorical_features) self._explanation = explainer.explain_global(self._evaluation_examples)