import time batch_size = tf.placeholder(dtype=tf.int32) keep_prop = tf.placeholder(dtype=tf.float32, name='KeepProp') # build input graph with tf.name_scope('InputPipeline'): batch_size = tf.placeholder(dtype=tf.int32, name='BatchSize') with tf.device("/cpu:0"): batch = ki.create_batch(batch_size, 'Test') x = batch[0] input_filename = batch[5] # CNN graph network_output, _ = network.forget_squeeze_net(x, keep_prop, True, False) class_scores, conf_scores, bbox_delta = interp.interpret( network_output, batch_size) # Filter predictions final_boxes, final_probs, final_class = fp.filter(class_scores, conf_scores, bbox_delta) test_saver = tf.train.Saver() sess = tf.Session() # restore from checkpoint restore_path, _ = t.get_last_ckpt(p.PATH_TO_CKPT + 'sec/') test_saver.restore(sess, restore_path) print( "Restored from ImageNet and KITTI trained network. Ready for testing. Dir = " + restore_path)
keep_prop = tf.placeholder(dtype=tf.float32, name='KeepProp') # Training with tf.device("/cpu:0"): t_batch = ki.create_batch(batch_size=batch_size, mode='Train') t_image = t_batch[0] t_mask = t_batch[1] t_delta = t_batch[2] t_coord = t_batch[3] t_class = t_batch[4] t_network_output, variables_to_save = network.forget_squeeze_net(t_image, keep_prop, True, reuse=False) t_class_scores, t_conf_scores, t_bbox_delta = interp.interpret( t_network_output, batch_size) t_total_loss, t_bbox_loss, t_conf_loss, t_class_loss, t_l2_loss = l.loss_function\ (t_mask, t_delta, t_coord, t_class, t_bbox_delta, t_conf_scores, t_class_scores, True) l.add_loss_summaries('Train_', t_total_loss, t_bbox_loss, t_conf_loss, t_class_loss, t_l2_loss) # Optimisation with tf.variable_scope('Optimisation'): global_step = tf.Variable(0, name='GlobalStep', trainable=False) train_step = tf.train.AdamOptimizer(p.LEARNING_RATE, name='TrainStep') grads_vars = train_step.compute_gradients(t_total_loss, tf.trainable_variables()) for i, (grad, var) in enumerate(grads_vars): grads_vars[i] = (tf.clip_by_value(grad, -100, 100,