def absolute_igusa_invariants_kohel(self):
        r"""
        Return the three absolute Igusa invariants used by Kohel [K]_.

        .. SEEALSO::

            :meth:`sage.schemes.hyperelliptic_curves.invariants`

        EXAMPLES::

            sage: R.<x> = QQ[]
            sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_kohel()
            (0, 0, 0)
            sage: HyperellipticCurve(x^5 - x + 1, x^2).absolute_igusa_invariants_kohel()
            (-1030567/178769, 259686400/178769, 20806400/178769)
            sage: HyperellipticCurve((x^5 - x + 1)(3*x + 1), (x^2)(3*x + 1)).absolute_igusa_invariants_kohel()
            (-1030567/178769, 259686400/178769, 20806400/178769)
        """
        f, h = self.hyperelliptic_polynomials()
        return invariants.absolute_igusa_invariants_kohel(4 * f + h ** 2)
示例#2
0
    def absolute_igusa_invariants_kohel(self):
        r"""
        Return the three absolute Igusa invariants used by Kohel [K]_.

        .. SEEALSO::

            :meth:`sage.schemes.hyperelliptic_curves.invariants`

        EXAMPLES::

            sage: R.<x> = QQ[]
            sage: HyperellipticCurve(x^5 - 1).absolute_igusa_invariants_kohel()
            (0, 0, 0)
            sage: HyperellipticCurve(x^5 - x + 1, x^2).absolute_igusa_invariants_kohel()
            (-1030567/178769, 259686400/178769, 20806400/178769)
            sage: HyperellipticCurve((x^5 - x + 1)(3*x + 1), (x^2)(3*x + 1)).absolute_igusa_invariants_kohel()
            (-1030567/178769, 259686400/178769, 20806400/178769)
        """
        f, h = self.hyperelliptic_polynomials()
        return invariants.absolute_igusa_invariants_kohel(4 * f + h**2)