size = np.int(512 / roi) padding_width = 4 masks_all = np.zeros((len(masks) * size * size, roi + 2 * padding_width, roi + 2 * padding_width)) inputs_all = np.zeros((len(inputs) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) previous_all = np.zeros( (len(inputs) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) nexts_all = np.zeros((len(inputs) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) masks_all = read_masks(masks, size, roi, padding_width) inputs_all = read_inputs(inputs, size, roi, padding_width) previous_all = read_inputs(previouss, size, roi, padding_width) nexts_all = read_inputs(nexts, size, roi, padding_width) full_set_all = np.zeros( (inputs_all.shape[0], inputs_all.shape[1], inputs_all.shape[2], 9)) full_set_all[:, :, :, 0:3] = previous_all full_set_all[:, :, :, 3:6] = inputs_all full_set_all[:, :, :, 6:9] = nexts_all num_items = full_set_all.shape[0] ind_train = np.int64(num_items * (1 - (1 / 4.8))) full_masks_test = masks_all[ind_train:] full_test_set = full_set_all[ind_train:]
(len(inputs_train_list) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) masks_test = np.zeros((len(masks_test_list) * size * size, roi + 2 * padding_width, roi + 2 * padding_width)) inputs_test = np.zeros( (len(inputs_test_list) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) previous_test = np.zeros( (len(inputs_test_list) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) next_test = np.zeros((len(inputs_test_list) * size * size, roi + 2 * padding_width, roi + 2 * padding_width, 3)) masks_train = read_masks(masks_train_list, size, roi, padding_width) inputs_train = read_inputs(inputs_train_list, size, roi, padding_width) previous_train = read_inputs(previouss_train_list, size, roi, padding_width) next_train = read_inputs(nexts_train_list, size, roi, padding_width) masks_test = read_masks(masks_test_list, size, roi, padding_width) inputs_test = read_inputs(inputs_test_list, size, roi, padding_width) previous_test = read_inputs(previouss_test_list, size, roi, padding_width) next_test = read_inputs(nexts_test_list, size, roi, padding_width) # sort out black masks for training full_masks_train = masks_train full_masks_train = mirror_combine_data(full_masks_train) full_masks_train = np.vstack((full_masks_train, full_masks_train)) ind = threshold_mean(full_masks_train, 0.01, 0.8)