示例#1
0
def main(argv: Tuple[str]) -> None:
    """Runs the LIFT model and saves the results.

    Arguments:
        argv {Tuple[str]} -- List of one parameters. There should be exactly
            one parameter - the path to the config file inside the tmp dir.
            This config file will be used to get all other information and
    """
    if len(argv) <= 0:
        raise RuntimeError("Missing argument <path_to_config_file>. Abort")

    with open(argv[0], 'rb') as src:
        config_file = pickle.load(src, encoding='utf-8')

    config, file_list = config_file
    model = load_model()

    if config['task'] == 'keypoints':
        for file in tqdm(file_list):
            keypoints, keypoints_image, heatmap_image = detect(
                file, config, model)
            if keypoints is not None:
                io_utils.save_detector_output(file, config['detector_name'],
                                              config, keypoints,
                                              keypoints_image, heatmap_image)

    elif config['task'] == 'descriptors':
        for file in tqdm(file_list):
            descriptors = compute(file, config, model)
            if descriptors is not None:
                io_utils.save_descriptor_output(file, config, descriptors)
示例#2
0
def main(argv: Tuple[str]) -> None:
    """Runs the TILDE model and saves the results.

    Arguments:
        argv {Tuple[str]} -- List of one parameters. There should be exactly
            one parameter - the path to the config file inside the tmp dir.
            This config file will be used to get all other information and
    """
    if len(argv) <= 0:
        raise RuntimeError("Missing argument <path_to_config_file>. Abort")

    with open(argv[0], 'rb') as src:
        config_file = pickle.load(src, encoding='utf-8')

    _config, file_list = config_file

    # Since we cannot split detector and descriptor in the superpoint model,
    # we handle SuperPoint as a detector and add the property `descriptor_name`
    # with value 'superpoint' to be able to save the descriptors.
    # Note, that superpoint can only handle superpoint keypoints to generate
    # descriptors, but the found keypoints can still be used by other descriptors.
    config = copy.deepcopy(_config)
    config['descriptor_name'] = 'superpoint'
    model = load_superpoint()

    if config['task'] == 'keypoints':
        for file in tqdm(file_list):
            keypoints, descriptors, keypoints_image, heatmap_image = detect(
                file, config, model)

            # Save detector output
            io_utils.save_detector_output(file, config['detector_name'],
                                          config, keypoints, keypoints_image,
                                          heatmap_image)

            # Save descriptor output
            io_utils.save_descriptor_output(file, config, descriptors)

    elif config['task'] == 'patches':
        for file in tqdm(file_list):
            descriptors = computeForPatchImages(file, config, model)
            if descriptors is not None:
                io_utils.save_descriptor_output(file, config, descriptors)
示例#3
0
def main(argv: Tuple[str]) -> None:
    """Runs the TILDE model and saves the results.

    Arguments:
        argv {Tuple[str]} -- List of one parameters. There should be exactly
            one parameter - the path to the config file inside the tmp dir.
            This config file will be used to get all other information and
            process the correct images.
    """
    if len(argv) <= 0:
        raise RuntimeError("Missing argument <path_to_config_file>. Abort")

    with open(argv[0], 'rb') as src:
        config_file = pickle.load(src, encoding='utf-8')

    config, file_list = config_file

    for file in tqdm(file_list):
        keypoints, keypoints_image, heatmap_image = detect(file, config)
        io_utils.save_detector_output(file, config['detector_name'], config, keypoints,
            keypoints_image, heatmap_image)
示例#4
0
def detect_bulk(file_list: List[str], config: Dict) -> None:
    """Computes keypoints for all files in `file_list`. Additionally for each
    file, create an image with the corresponding keypoints drawn into it.
    All results will be saved within the `tmp` folder for this module.

    Arguments:
        file_list {List[str]} -- List of all images for which to compute keypoints.
        config {Dict} -- General configuration object. See config_run_detectors.py
        for more information.

    Returns:
        None -- All results here are saved within the `tmp` dir specified within
        the `config` object.
    """

    try:
        # Create feature map for each image in 'covariant_points' folder
        subprocess.check_call([
            'python',
            'patch_network_point_test.py',
            '--save_feature',
            'covariant_points',
            '--output_dir',
            config['tmp_dir_tcovdet'],
            '--file_list',
            ' '.join(file_list),
        ])

    except Exception as e:
        print('TCovDet: Covariant feature map creation failed.')
        print(e)
        raise e

    try:
        collection_names = []
        set_names = []
        image_names = []
        for file_path in file_list:
            collection_name, set_name, file_base, extension = io_utils.get_path_components(
                file_path)
            collection_names.append(collection_name)
            set_names.append(set_name)
            image_names.append(file_base)

        # The path to this file
        matlab_config_path = os.path.join(config['tmp_dir_tcovdet'],
                                          'filelist.mat')
        # Where to save the keypoints
        dir_output = os.path.join(config['tmp_dir_tcovdet'], 'feature_points')
        io_utils.create_dir(dir_output)  # Create on the fly if not existent

        # Where the .mat files of the covariant step lie
        dir_data = os.path.join(config['tmp_dir_tcovdet'], 'covariant_points')

        # Set maxinal number of keypoints to find
        point_number = 1000 if config['max_num_keypoints'] is None else config[
            'max_num_keypoints']

        savemat(
            matlab_config_path, {
                'file_list': file_list,
                'collection_names': collection_names,
                'set_names': set_names,
                'image_names': image_names,
                'dir_output': dir_output,
                'dir_data': dir_data,
                'point_number': point_number
            })
        subprocess.check_call([
            'matlab', '-nosplash', '-r',
            "point_extractor('vlfeat-0.9.21', '{}');quit".format(
                matlab_config_path)
        ])

    except Exception as e:
        print('TCovDet: Keypoint feature map creation failed.')
        print(e)
        raise e

    # Load each created .mat file, extract the keypoints (Column 2 and 5),
    # create list of cv2.KeyPoint.
    # Then load the image, scale it, draw the keypoints in it and save everything
    for i in tqdm(range(len(file_list))):
        file = file_list[i]
        mat_path = os.path.join(config['tmp_dir_tcovdet'], 'feature_points',
                                collection_names[i], set_names[i],
                                image_names[i] + '.mat')
        kpts_numpy = loadmat(mat_path)['feature'][:, [2, 5]]  # numpy array
        scores = loadmat(mat_path)['score']

        if len(kpts_numpy):
            kpts_cv2 = [
                cv2.KeyPoint(x[0], x[1], 1.0, _response=scores[idx])
                for idx, x in enumerate(kpts_numpy)
            ]  # list of cv2.KeyPoint

            img = cv2.imread(file, 0)
            if (img.shape[0] * img.shape[1]) > (1024 * 768):
                ratio = (1024 * 768 /
                         float(img.shape[0] * img.shape[1]))**(0.5)
                img = cv2.resize(
                    img,
                    (int(img.shape[1] * ratio), int(img.shape[0] * ratio)),
                    interpolation=cv2.INTER_CUBIC)

            img_kp = io_utils.draw_keypoints(img, kpts_cv2, config)

            # Save everything.
            io_utils.save_detector_output(file, config['detector_name'],
                                          config, kpts_cv2, img_kp, None)
        else:
            print('Warning: Did not find any keypoints!')