def start_helper(self, version_token): is_file = isinstance(self._image_file, six.string_types) and os.path.isfile( self._image_file) if is_file: file_name = self._image_file else: file_name = "inmem" args = [ file_name, version_token, "viewer.powder_arcs.show=False", "viewer.powder_arcs.code=3n9c", ] params = cxi_phil.cxi_versioned_extract(args) horizons_phil = params.persist.commands if is_file: image = NpyImage(file_name) else: print( "This is not a file; assume the data are in the defined dictionary format" ) image = NpyImage(file_name, source_data=self._image_file) image.readHeader(horizons_phil) image.translate_tiles(horizons_phil) # necessary to keep the phil parameters for subsequent calls to get_tile_manager() image.horizons_phil_cache = copy.deepcopy(horizons_phil) self.detectorbase = image
def start_helper(self, version_token): from spotfinder.applications.xfel import cxi_phil from iotbx.detectors.npy import NpyImage import os, copy is_file = isinstance(self._image_file, basestring) and os.path.isfile( self._image_file) if is_file: file_name = self._image_file else: file_name = "inmem" args = [ file_name, version_token, "viewer.powder_arcs.show=False", "viewer.powder_arcs.code=3n9c", ] params = cxi_phil.cxi_versioned_extract(args) horizons_phil = params.persist.commands if is_file: I = NpyImage(file_name) else: print "This is not a file; assume the data are in the defined dictionary format" I = NpyImage(file_name, source_data=self._image_file) I.readHeader(horizons_phil) I.translate_tiles(horizons_phil) # necessary to keep the phil parameters for subsequent calls to get_tile_manager() I.horizons_phil_cache = copy.deepcopy(horizons_phil) self.detectorbase = I
def get_CSPAD_active_areas(image, version_phil): from libtbx.phil import parse from iotbx.detectors.npy import NpyImage from spotfinder.applications.xfel.cxi_phil import cxi_basic_start data = pickle.load(open(image, "rb")) scope = parse(file_name=version_phil) basic_scope = cxi_basic_start() new_scope = basic_scope.phil_scope.fetch(source=scope) phil = new_scope.extract() img = NpyImage("dummy", source_data=data) img.readHeader(phil) tm = img.get_tile_manager(phil) return list(tm.effective_tiling_as_flex_int())
def tiling_from_image(self): if self.tm is not None: return self.tm labelit_regression = libtbx.env.find_in_repositories( relative_path="labelit_regression", test=os.path.isdir) if detector_phil is None: detector_phil = os.path.join(labelit_regression, "xfel", "cxi-10.1.phil") detector_scope = parse(file_name=detector_phil) basic_scope = cxi_basic_start() new_scope = basic_scope.phil_scope.fetch(source=detector_scope) tiling_phil = new_scope.extract() img = NpyImage("dummy", source_data=img_data) img.readHeader(tiling_phil) self.tm = img.get_tile_manager(phil) return self.tm
def start_helper(self, version_token): from spotfinder.applications.xfel import cxi_phil from iotbx.detectors.npy import NpyImage import os,copy is_file = isinstance(self._image_file, basestring) and os.path.isfile(self._image_file) if is_file: file_name = self._image_file else: file_name = "inmem" args = [file_name, version_token, "viewer.powder_arcs.show=False", "viewer.powder_arcs.code=3n9c", ] params = cxi_phil.cxi_versioned_extract(args) horizons_phil = params.persist.commands if is_file: I = NpyImage(file_name) else: print "This is not a file; assume the data are in the defined dictionary format" I = NpyImage(file_name, source_data=self._image_file) I.readHeader(horizons_phil) I.translate_tiles(horizons_phil) # necessary to keep the phil parameters for subsequent calls to get_tile_manager() I.horizons_phil_cache = copy.deepcopy(horizons_phil) self.detectorbase = I
def ImageFactory(filename): global parameters if type(filename)==type("") and os.path.isfile(filename): from dxtbx.format.FormatPYunspecified import FormatPYunspecified assert FormatPYunspecified.understand(filename) I = FormatPYunspecified(filename).get_detectorbase() else: print "This is not a file; assume the data are in the defined dictionary format" I = NpyImage(filename, source_data=parameters.horizons_phil.indexing.data) I.readHeader(parameters.horizons_phil) I.translate_tiles(parameters.horizons_phil) #from xfel.cxi.display_powder_arcs import apply_gaussian_noise #apply_gaussian_noise(I,parameters.horizons_phil) if (parameters.horizons_phil.viewer.powder_arcs.show): from xfel.cxi.display_powder_arcs import superimpose_powder_arcs superimpose_powder_arcs(I,parameters.horizons_phil) return I
def ImageFactory(path): if os.path.isfile(path): I = NpyImage(path) I.readHeader() return (I)
if "DISTANCE" in source_data and source_data["DISTANCE"] > 1000: # downstream CS-PAD detector station of CXI instrument LCLS_detector_address = 'CxiDsd-0|Cspad-0' else: LCLS_detector_address = source_data["DETECTOR_ADDRESS"] timesec = reverse_timestamp( source_data["TIMESTAMP"] )[0] version_lookup = detector_format_function(LCLS_detector_address,timesec) args = [ "distl.detector_format_version=%s"%version_lookup, "viewer.powder_arcs.show=False", "viewer.powder_arcs.code=3n9c", ] horizons_phil = cxi_phil.cxi_versioned_extract(args).persist.commands img = NpyImage(params.file_path, source_data) img.readHeader(horizons_phil) img.translate_tiles(horizons_phil) if params.verbose: img.show_header() the_tiles = img.get_tile_manager(horizons_phil).effective_tiling_as_flex_int( reapply_peripheral_margin=False,encode_inactive_as_zeroes=True) if params.beam_x is None: params.beam_x = img.beamx / img.pixel_size if params.beam_y is None: params.beam_y = img.beamy / img.pixel_size if params.verbose: logger.write("I think the beam center is (%s,%s)\n"%(params.beam_x, params.beam_y))
evt = fake_evt(data3d) beam_center, active_areas = cbcaa(fake_config(), sections) data = flex.int( CsPadDetector(address, evt, env, sections).astype(numpy.float64)) img_dict = dpack(active_areas=active_areas, address=address, beam_center_x=beam_center[0] * pixel_size, beam_center_y=beam_center[1] * pixel_size, data=data, distance=params.distance, pixel_size=pixel_size, timestamp=timestamp, wavelength=params.wavelength) img = NpyImage("", source_data=img_dict) args = [ "distl.detector_format_version=%s" % params.detector_format_version ] horizons_phil = cxi_phil.cxi_versioned_extract(args) img.readHeader(horizons_phil) img.translate_tiles(horizons_phil) tm = img.get_tile_manager(horizons_phil) effective_active_areas = tm.effective_tiling_as_flex_int() if annulus: inner = params.distance * math.tan( 2 * math.sinh(params.wavelength / (2 * params.annulus_inner))) / pixel_size
def run(args, source_data=None): from xfel import radial_average from scitbx.array_family import flex from iotbx.detectors.cspad_detector_formats import reverse_timestamp from iotbx.detectors.cspad_detector_formats import detector_format_version as detector_format_function from spotfinder.applications.xfel import cxi_phil from iotbx.detectors.npy import NpyImage import os, sys from iotbx.detectors.npy import NpyImage user_phil = [] # TODO: replace this stuff with iotbx.phil.process_command_line_with_files # as soon as I can safely modify it for arg in args: if (not "=" in arg): try: user_phil.append(libtbx.phil.parse("""file_path=%s""" % arg)) except ValueError as e: raise Sorry("Unrecognized argument '%s'" % arg) else: try: user_phil.append(libtbx.phil.parse(arg)) except RuntimeError as e: raise Sorry("Unrecognized argument '%s' (error: %s)" % (arg, str(e))) params = master_phil.fetch(sources=user_phil).extract() if params.file_path is None or not os.path.isfile( params.file_path) and source_data is None: master_phil.show() raise Usage( "file_path must be defined (either file_path=XXX, or the path alone)." ) assert params.handedness is not None assert params.n_bins is not None assert params.verbose is not None assert params.output_bins is not None if source_data is None: from libtbx import easy_pickle source_data = easy_pickle.load(params.file_path) if params.output_file is None: logger = sys.stdout else: logger = open(params.output_file, 'w') logger.write("%s " % params.output_file) if not "DETECTOR_ADDRESS" in source_data: # legacy format; try to guess the address LCLS_detector_address = 'CxiDs1-0|Cspad-0' if "DISTANCE" in source_data and source_data["DISTANCE"] > 1000: # downstream CS-PAD detector station of CXI instrument LCLS_detector_address = 'CxiDsd-0|Cspad-0' else: LCLS_detector_address = source_data["DETECTOR_ADDRESS"] timesec = reverse_timestamp(source_data["TIMESTAMP"])[0] version_lookup = detector_format_function(LCLS_detector_address, timesec) args = [ "distl.detector_format_version=%s" % version_lookup, "viewer.powder_arcs.show=False", "viewer.powder_arcs.code=3n9c", ] horizons_phil = cxi_phil.cxi_versioned_extract(args).persist.commands img = NpyImage(params.file_path, source_data) img.readHeader(horizons_phil) img.translate_tiles(horizons_phil) if params.verbose: img.show_header() the_tiles = img.get_tile_manager( horizons_phil).effective_tiling_as_flex_int( reapply_peripheral_margin=False, encode_inactive_as_zeroes=True) if params.beam_x is None: params.beam_x = img.beamx / img.pixel_size if params.beam_y is None: params.beam_y = img.beamy / img.pixel_size if params.verbose: logger.write("I think the beam center is (%s,%s)\n" % (params.beam_x, params.beam_y)) bc = (int(params.beam_x), int(params.beam_y)) extent = int( math.ceil( max(distance((0, 0), bc), distance((img.size1, 0), bc), distance((0, img.size2), bc), distance((img.size1, img.size2), bc)))) if params.n_bins < extent: params.n_bins = extent extent_in_mm = extent * img.pixel_size extent_two_theta = math.atan(extent_in_mm / img.distance) * 180 / math.pi sums = flex.double(params.n_bins) * 0 sums_sq = flex.double(params.n_bins) * 0 counts = flex.int(params.n_bins) * 0 data = img.get_raw_data() if hasattr(data, "as_double"): data = data.as_double() logger.write("Average intensity: %9.3f\n" % flex.mean(data)) if params.verbose: logger.write("Generating average...tile:") logger.flush() for tile in xrange(len(the_tiles) // 4): if params.verbose: logger.write(" %d" % tile) logger.flush() x1, y1, x2, y2 = get_tile_coords(the_tiles, tile) radial_average(data, bc, sums, sums_sq, counts, img.pixel_size, img.distance, (x1, y1), (x2, y2)) if params.verbose: logger.write(" Finishing...\n") # average, avoiding division by zero results = sums.set_selected(counts <= 0, 0) results /= counts.set_selected(counts <= 0, 1).as_double() # calculte standard devations std_devs = [ math.sqrt((sums_sq[i] - sums[i] * results[i]) / counts[i]) if counts[i] > 0 else 0 for i in xrange(len(sums)) ] xvals = flex.double(len(results)) max_twotheta = float('-inf') max_result = float('-inf') for i in xrange(len(results)): twotheta = i * extent_two_theta / params.n_bins xvals[i] = twotheta if params.output_bins and "%.3f" % results[i] != "nan": #logger.write("%9.3f %9.3f\n"% (twotheta,results[i])) #.xy format for Rex.cell. logger.write( "%9.3f %9.3f %9.3f\n" % (twotheta, results[i], std_devs[i])) #.xye format for GSASII #logger.write("%.3f %.3f %.3f\n"%(twotheta,results[i],ds[i])) # include calculated d spacings if results[i] > max_result: max_twotheta = twotheta max_result = results[i] logger.write( "Maximum 2theta for %s, TS %s: %f, value: %f\n" % (params.file_path, source_data['TIMESTAMP'], max_twotheta, max_result)) if params.verbose: from pylab import scatter, show, xlabel, ylabel, ylim scatter(xvals, results) xlabel("2 theta") ylabel("Avg ADUs") if params.plot_y_max is not None: ylim(0, params.plot_y_max) show() return xvals, results
evt = fake_evt(data3d) beam_center, active_areas = cbcaa(fake_config(),sections) data = flex.int(CsPadDetector(address, evt, env, sections).astype(numpy.float64)) img_dict = dpack( active_areas=active_areas, address=address, beam_center_x=beam_center[0]*pixel_size, beam_center_y=beam_center[1]*pixel_size, data=data, distance=params.distance, pixel_size=pixel_size, timestamp=timestamp, wavelength=params.wavelength) img = NpyImage("", source_data=img_dict) args = ["distl.detector_format_version=%s"%params.detector_format_version] horizons_phil = cxi_phil.cxi_versioned_extract(args) img.readHeader(horizons_phil) img.translate_tiles(horizons_phil) tm = img.get_tile_manager(horizons_phil) effective_active_areas = tm.effective_tiling_as_flex_int() if annulus: inner = params.distance * math.tan(2*math.sinh(params.wavelength/(2*params.annulus_inner)))/pixel_size outer = params.distance * math.tan(2*math.sinh(params.wavelength/(2*params.annulus_outer)))/pixel_size print "Pixel inner:", inner print "Pixel outer:", outer if params.resolution is not None:
def ImageFactory(filename): if os.path.isfile(filename): I = NpyImage(filename) I.readHeader() return I
if "DISTANCE" in source_data and source_data["DISTANCE"] > 1000: # downstream CS-PAD detector station of CXI instrument LCLS_detector_address = 'CxiDsd-0|Cspad-0' else: LCLS_detector_address = source_data["DETECTOR_ADDRESS"] timesec = reverse_timestamp(source_data["TIMESTAMP"])[0] version_lookup = detector_format_function(LCLS_detector_address, timesec) args = [ "distl.detector_format_version=%s" % version_lookup, "viewer.powder_arcs.show=False", "viewer.powder_arcs.code=3n9c", ] horizons_phil = cxi_phil.cxi_versioned_extract(args).persist.commands img = NpyImage(params.file_path, source_data) img.readHeader(horizons_phil) img.translate_tiles(horizons_phil) if params.verbose: img.show_header() the_tiles = img.get_tile_manager( horizons_phil).effective_tiling_as_flex_int( reapply_peripheral_margin=False, encode_inactive_as_zeroes=True) if params.beam_x is None: params.beam_x = img.beamx / img.pixel_size if params.beam_y is None: params.beam_y = img.beamy / img.pixel_size if params.verbose: logger.write("I think the beam center is (%s,%s)\n" %