def __init__(self, init, beads, nm, cell, fcomponents, ensemble=None, motion=None, prefix=""): """Initialises System class. Args: init: A class to deal with initializing the system. beads: A beads object giving the atom positions. cell: A cell object giving the system box. fcomponents: A list of force components that are active for each replica of the system. bcomponents: A list of force components that are considered as bias, and act on each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. nm: A class dealing with path NM operations. prefix: A string used to differentiate the output files of different systems. """ info(" # Initializing system object ", verbosity.low) self.prefix = prefix self.init = init self.ensemble = ensemble self.motion = motion self.beads = beads self.cell = cell self.nm = nm self.fcomp = fcomponents self.forces = Forces() self.properties = Properties() self.trajs = Trajectories()
def __init__(self, eens=0.0, econs=0.0, temp=None, pext=None, stressext=None, bcomponents=None, bweights=None, hweights=None, time=0.0): """Initialises Ensemble. Args: temp: The temperature. fixcom: An optional boolean which decides whether the centre of mass motion will be constrained or not. Defaults to False. """ dself = dd(self) dself.temp = depend_value(name='temp') if temp is not None: self.temp = temp else: self.temp = -1.0 dself.stressext = depend_array(name='stressext', value=np.zeros((3, 3), float)) if stressext is not None: self.stressext = np.reshape(np.asarray(stressext), (3, 3)) else: self.stressext = -1.0 dself.pext = depend_value(name='pext') if pext is not None: self.pext = pext else: self.pext = -1.0 dself.eens = depend_value(name='eens') if eens is not None: self.eens = eens else: self.eens = 0.0 # the bias force contains two bits: explicit biases (that are meant to represent non-physical external biasing potentials) # and hamiltonian weights (that will act by scaling different physical components of the force). Both are bound as components # of the "bias force" evaluator, but their meaning (and the wiring further down in bind()) differ. # these are the additional bias components if bcomponents is None: bcomponents = [] self.bcomp = bcomponents self.bias = Forces() # and their weights if bweights is None or len(bweights) == 0: bweights = np.ones(len(self.bcomp)) dself.bweights = depend_array(name="bweights", value=np.asarray(bweights)) # weights of the Hamiltonian scaling if hweights is None: hweights = np.ones(0) self.hweights = np.asarray(hweights) # Internal time counter dd(self).time = depend_value(name='time') self.time = time
def __init__(self, beads, cell, forces, ensemble, prng, outputs, nm, init, step=0, tsteps=1000, ttime=0): """Initialises Simulation class. Args: beads: A beads object giving the atom positions. cell: A cell object giving the system box. forces: A forcefield object giving the force calculator for each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. prng: A random number object. outputs: A list of output objects. nm: A class dealing with path NM operations. init: A class to deal with initializing the simulation object. step: An optional integer giving the current simulation time step. Defaults to 0. tsteps: An optional integer giving the total number of steps. Defaults to 1000. ttime: The simulation running time. Used on restart, to keep a cumulative total. """ info(" # Initializing simulation object ", verbosity.low) self.prng = prng self.ensemble = ensemble self.beads = beads self.cell = cell self.nm = nm # initialize the configuration of the system self.init = init init.init_stage1(self) self.flist = forces self.forces = Forces() self.outputs = outputs dset(self, "step", depend_value(name="step", value=step)) self.tsteps = tsteps self.ttime = ttime self.properties = Properties() self.trajs = Trajectories() self.chk = None self.rollback = True
def __init__(self, beads, cell, forces, ensemble, prng, outputs, nm, init, step=0, tsteps=1000, ttime=0): """Initialises Simulation class. Args: beads: A beads object giving the atom positions. cell: A cell object giving the system box. forces: A forcefield object giving the force calculator for each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. prng: A random number object. outputs: A list of output objects. nm: A class dealing with path NM operations. init: A class to deal with initializing the simulation object. step: An optional integer giving the current simulation time step. Defaults to 0. tsteps: An optional integer giving the total number of steps. Defaults to 1000. ttime: The simulation running time. Used on restart, to keep a cumulative total. """ info(" # Initializing simulation object ", verbosity.low ) self.prng = prng self.ensemble = ensemble self.beads = beads self.cell = cell self.nm = nm # initialize the configuration of the system self.init = init init.init_stage1(self) self.flist = forces self.forces = Forces() self.outputs = outputs dset(self, "step", depend_value(name="step", value=step)) self.tsteps = tsteps self.ttime = ttime self.properties = Properties() self.trajs = Trajectories() self.chk = None self.rollback = True
class System(dobject): """Physical system object. Contains all the physical information. Also handles stepping and output. Attributes: beads: A beads object giving the atom positions. cell: A cell object giving the system box. fcomp: A list of force components that must act on each replica forces: A Forces object that actually compute energy and forces ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. outputs: A list of output objects that should be printed during the run nm: A helper object dealing with normal modes transformation properties: A property object for dealing with property output. trajs: A trajectory object for dealing with trajectory output. init: A class to deal with initializing the system. simul: The parent simulation object. """ def __init__(self, init, beads, nm, cell, fcomponents, ensemble=None, motion=None, prefix=""): """Initialises System class. Args: init: A class to deal with initializing the system. beads: A beads object giving the atom positions. cell: A cell object giving the system box. fcomponents: A list of force components that are active for each replica of the system. bcomponents: A list of force components that are considered as bias, and act on each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. nm: A class dealing with path NM operations. prefix: A string used to differentiate the output files of different systems. """ info(" # Initializing system object ", verbosity.low) self.prefix = prefix self.init = init self.ensemble = ensemble self.motion = motion self.beads = beads self.cell = cell self.nm = nm self.fcomp = fcomponents self.forces = Forces() self.properties = Properties() self.trajs = Trajectories() def bind(self, simul): """Calls the bind routines for all the objects in the system.""" self.simul = simul # keeps a handle to the parent simulation object # binds important computation engines print "NOW BINDING THE FORCES.... " self.forces.bind(self.beads, self.cell, self.fcomp, self.simul.fflist,open_paths=self.nm.open_paths) self.nm.bind(self.ensemble, self.motion, beads=self.beads, forces=self.forces) self.ensemble.bind(self.beads, self.nm, self.cell, self.forces, self.simul.fflist) self.motion.bind(self.ensemble, self.beads, self.nm, self.cell, self.forces, self.prng, simul.output_maker) dpipe(dd(self.nm).omegan2, dd(self.forces).omegan2) self.init.init_stage2(self) # binds output management objects self._propertylock = threading.Lock() self.properties.bind(self) self.trajs.bind(self)
class Simulation(dobject): """Main simulation object. Contains all the references and the main dynamics loop. Also handles the initialization and output. Attributes: beads: A beads object giving the atom positions. cell: A cell object giving the system box. prng: A random number generator object. flist: A list of forcefield objects giving different ways to partially calculate the forces. forces: A Forces object for calculating the total force for all the replicas. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. tsteps: The total number of steps. ttime: The wall clock time (in seconds). format: A string specifying both the format and the extension of traj output. outputs: A list of output objects that should be printed during the run nm: A helper object dealing with normal modes transformation properties: A property object for dealing with property output. trajs: A trajectory object for dealing with trajectory output. chk: A checkpoint object for dealing with checkpoint output. rollback: If set to true, the state of the simulation at the start of the step will be output to a restart file rather than the current state of the simulation. This is because we cannot restart from half way through a step, only from the beginning of a step, so this is necessary for the trajectory to be continuous. Depend objects: step: The current simulation step. """ def __init__(self, beads, cell, forces, ensemble, prng, outputs, nm, init, step=0, tsteps=1000, ttime=0): """Initializes Simulation class. Args: beads: A beads object giving the atom positions. cell: A cell object giving the system box. forces: A forcefield object giving the force calculator for each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. prng: A random number object. outputs: A list of output objects. nm: A class dealing with path NM operations. init: A class to deal with initializing the simulation object. step: An optional integer giving the current simulation time step. Defaults to 0. tsteps: An optional integer giving the total number of steps. Defaults to 1000. ttime: The simulation running time. Used on restart, to keep a cumulative total. """ info(" # Initializing simulation object ", verbosity.low ) self.prng = prng self.ensemble = ensemble self.beads = beads self.cell = cell self.nm = nm # initialize the configuration of the system self.init = init init.init_stage1(self) self.flist = forces self.forces = Forces() self.outputs = outputs dset(self, "step", depend_value(name="step", value=step)) self.tsteps = tsteps self.ttime = ttime self.properties = Properties() self.trajs = Trajectories() self.chk = None self.rollback = True def bind(self): """Calls the bind routines for all the objects in the simulation.""" # binds important computation engines self.nm.bind(self.beads, self.ensemble) self.forces.bind(self.beads, self.cell, self.flist) self.ensemble.bind(self.beads, self.nm, self.cell, self.forces, self.prng) self.init.init_stage2(self) # binds output management objects self.properties.bind(self) self.trajs.bind(self) for o in self.outputs: o.bind(self) self.chk = CheckpointOutput("RESTART", 1, True, 0) self.chk.bind(self) # registers the softexit routine softexit.register(self.softexit) def softexit(self): """Deals with a soft exit request. Tries to ensure that a consistent restart checkpoint is written out. """ if self.step < self.tsteps: self.step += 1 if not self.rollback: self.chk.store() self.chk.write(store=False) self.forces.stop() def run(self): """Runs the simulation. Does all the simulation steps, and outputs data to the appropriate files when necessary. Also deals with starting and cleaning up the threads used in the communication between the driver and the PIMD code. """ self.forces.run() # prints initial configuration -- only if we are not restarting if (self.step == 0): self.step = -1 for o in self.outputs: o.write() self.step = 0 steptime = 0.0 simtime = time.time() cstep = 0 tptime = 0.0 tqtime = 0.0 tttime = 0.0 ttot = 0.0 # main MD loop for self.step in range(self.step,self.tsteps): # stores the state before doing a step. # this is a bit time-consuming but makes sure that we can honor soft # exit requests without screwing the trajectory steptime = -time.time() self.chk.store() self.ensemble.step() for o in self.outputs: o.write() if os.path.exists("EXIT"): # soft-exit self.rollback = False softexit.trigger() steptime += time.time() ttot += steptime tptime += self.ensemble.ptime tqtime += self.ensemble.qtime tttime += self.ensemble.ttime cstep += 1 if verbosity.high or (verbosity.medium and self.step%100 == 0) or (verbosity.low and self.step%1000 == 0): info(" # Average timings at MD step % 7d. t/step: %10.5e [p: %10.5e q: %10.5e t: %10.5e]" % ( self.step, ttot/cstep, tptime/cstep, tqtime/cstep, tttime/cstep ) ) cstep = 0 tptime = 0.0 tqtime = 0.0 tttime = 0.0 ttot = 0.0 info(" # MD diagnostics: V: %10.5e Kcv: %10.5e Ecns: %10.5e" % (self.properties["potential"], self.properties["kinetic_cv"], self.properties["conserved"] ) ) if (self.ttime > 0 and time.time() - simtime > self.ttime): info(" # Wall clock time expired! Bye bye!", verbosity.low ) break info(" # Simulation ran successfully for the prescribed total_step! Bye bye!", verbosity.low ) self.rollback = False softexit.trigger()
class Ensemble(dobject): """Base ensemble class. Defines the thermodynamic state of the system. Depend objects: temp: The system's temperature. pext: The systems's pressure stressext: The system's stress tensor bias: Explicit bias forces """ def __init__(self, eens=0.0, econs=0.0, temp=None, pext=None, stressext=None, bcomponents=None, bweights=None, hweights=None, time=0.0): """Initialises Ensemble. Args: temp: The temperature. fixcom: An optional boolean which decides whether the centre of mass motion will be constrained or not. Defaults to False. """ dself = dd(self) dself.temp = depend_value(name='temp') if temp is not None: self.temp = temp else: self.temp = -1.0 dself.stressext = depend_array(name='stressext', value=np.zeros((3, 3), float)) if stressext is not None: self.stressext = np.reshape(np.asarray(stressext), (3, 3)) else: self.stressext = -1.0 dself.pext = depend_value(name='pext') if pext is not None: self.pext = pext else: self.pext = -1.0 dself.eens = depend_value(name='eens') if eens is not None: self.eens = eens else: self.eens = 0.0 # the bias force contains two bits: explicit biases (that are meant to represent non-physical external biasing potentials) # and hamiltonian weights (that will act by scaling different physical components of the force). Both are bound as components # of the "bias force" evaluator, but their meaning (and the wiring further down in bind()) differ. # these are the additional bias components if bcomponents is None: bcomponents = [] self.bcomp = bcomponents self.bias = Forces() # and their weights if bweights is None or len(bweights) == 0: bweights = np.ones(len(self.bcomp)) dself.bweights = depend_array(name="bweights", value=np.asarray(bweights)) # weights of the Hamiltonian scaling if hweights is None: hweights = np.ones(0) self.hweights = np.asarray(hweights) # Internal time counter dd(self).time = depend_value(name='time') self.time = time def copy(self): return Ensemble(eens=self.eens, econs=0.0, temp=self.temp, pext=self.pext, stressext=dstrip(self.stressext).copy(), bcomponents=self.bcomp, bweights=dstrip(self.bweights).copy(), hweights=dstrip(self.hweights).copy(), time=self.time) def bind(self, beads, nm, cell, bforce, fflist, elist=[], xlpot=[], xlkin=[]): self.beads = beads self.cell = cell self.forces = bforce self.nm = nm dself = dd(self) # this binds just the explicit bias forces self.bias.bind(self.beads, self.cell, self.bcomp, fflist, open_paths=nm.open_paths) dself.econs = depend_value(name='econs', func=self.get_econs) # dependencies of the conserved quantity dself.econs.add_dependency(dd(self.nm).kin) dself.econs.add_dependency(dd(self.forces).pot) dself.econs.add_dependency(dd(self.bias).pot) dself.econs.add_dependency(dd(self.nm).vspring) dself.econs.add_dependency(dself.eens) # pipes the weights to the list of weight vectors i = 0 for fc in self.bias.mforces: if fc.weight != 1: warning( "The weight given to forces used in an ensemble bias are given a weight determined by bias_weight" ) dpipe(dself.bweights, dd(fc).weight, i) i += 1 # add Hamiltonian REM bias components if len(self.hweights) == 0: self.hweights = np.ones(len(self.forces.mforces)) dself.hweights = depend_array(name="hweights", value=np.asarray(self.hweights)) # we use ScaledForceComponents to replicate the physical forces without (hopefully) them being actually recomputed for ic in range(len(self.forces.mforces)): sfc = ScaledForceComponent(self.forces.mforces[ic], 1.0) self.bias.add_component(self.forces.mbeads[ic], self.forces.mrpc[ic], sfc) dd(sfc).scaling._func = lambda i=ic: self.hweights[i] - 1 dd(sfc).scaling.add_dependency(dself.hweights) self._elist = [] for e in elist: self.add_econs(e) dself.lpens = depend_value(name='lpens', func=self.get_lpens, dependencies=[dself.temp]) dself.lpens.add_dependency(dd(self.nm).kin) dself.lpens.add_dependency(dd(self.forces).pot) dself.lpens.add_dependency(dd(self.bias).pot) dself.lpens.add_dependency(dd(self.nm).vspring) # extended Lagrangian terms for the ensemble self._xlpot = [] for p in xlpot: self.add_xlpot(p) self._xlkin = [] for k in xlkin: self.add_xlkin(k) def add_econs(self, e): self._elist.append(e) dd(self).econs.add_dependency(e) def add_xlpot(self, p): self._xlpot.append(p) dd(self).lpens.add_dependency(p) def add_xlkin(self, k): self._xlkin.append(k) dd(self).lpens.add_dependency(k) def get_econs(self): """Calculates the conserved energy quantity for constant energy ensembles. """ eham = self.nm.vspring + self.nm.kin + self.forces.pot eham += self.bias.pot # bias for e in self._elist: eham += e.get() return eham + self.eens def get_lpens(self): """Returns the ensemble probability (modulo the partition function) for the ensemble. """ lpens = (self.forces.pot + self.bias.pot + self.nm.kin + self.nm.vspring) # inlcude terms associated with an extended Lagrangian integrator of some sort for p in self._xlpot: lpens += p.get() for k in self._xlkin: lpens += k.get() lpens *= -1.0 / (Constants.kb * self.temp * self.beads.nbeads) return lpens
class Simulation(dobject): """Main simulation object. Contains all the references and the main dynamics loop. Also handles the initialisation and output. Attributes: beads: A beads object giving the atom positions. cell: A cell object giving the system box. prng: A random number generator object. flist: A list of forcefield objects giving different ways to partially calculate the forces. forces: A Forces object for calculating the total force for all the replicas. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. tsteps: The total number of steps. ttime: The wall clock time (in seconds). format: A string specifying both the format and the extension of traj output. outputs: A list of output objects that should be printed during the run nm: A helper object dealing with normal modes transformation properties: A property object for dealing with property output. trajs: A trajectory object for dealing with trajectory output. chk: A checkpoint object for dealing with checkpoint output. rollback: If set to true, the state of the simulation at the start of the step will be output to a restart file rather than the current state of the simulation. This is because we cannot restart from half way through a step, only from the beginning of a step, so this is necessary for the trajectory to be continuous. Depend objects: step: The current simulation step. """ def __init__(self, beads, cell, forces, ensemble, prng, outputs, nm, init, step=0, tsteps=1000, ttime=0): """Initialises Simulation class. Args: beads: A beads object giving the atom positions. cell: A cell object giving the system box. forces: A forcefield object giving the force calculator for each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. prng: A random number object. outputs: A list of output objects. nm: A class dealing with path NM operations. init: A class to deal with initializing the simulation object. step: An optional integer giving the current simulation time step. Defaults to 0. tsteps: An optional integer giving the total number of steps. Defaults to 1000. ttime: The simulation running time. Used on restart, to keep a cumulative total. """ info(" # Initializing simulation object ", verbosity.low ) self.prng = prng self.ensemble = ensemble self.beads = beads self.cell = cell self.nm = nm # initialize the configuration of the system self.init = init init.init_stage1(self) self.flist = forces self.forces = Forces() self.outputs = outputs dset(self, "step", depend_value(name="step", value=step)) self.tsteps = tsteps self.ttime = ttime self.properties = Properties() self.trajs = Trajectories() self.chk = None self.rollback = True def bind(self): """Calls the bind routines for all the objects in the simulation.""" # binds important computation engines self.nm.bind(self.beads, self.ensemble) self.forces.bind(self.beads, self.cell, self.flist) self.ensemble.bind(self.beads, self.nm, self.cell, self.forces, self.prng) self.init.init_stage2(self) # binds output management objects self.properties.bind(self) self.trajs.bind(self) for o in self.outputs: o.bind(self) self.chk = CheckpointOutput("RESTART", 1, True, 0) self.chk.bind(self) # registers the softexit routine softexit.register(self.softexit) def softexit(self): """Deals with a soft exit request. Tries to ensure that a consistent restart checkpoint is written out. """ if self.step < self.tsteps: self.step += 1 if not self.rollback: self.chk.store() self.chk.write(store=False) self.forces.stop() def run(self): """Runs the simulation. Does all the simulation steps, and outputs data to the appropriate files when necessary. Also deals with starting and cleaning up the threads used in the communication between the driver and the PIMD code. """ self.forces.run() # prints inital configuration -- only if we are not restarting if (self.step == 0): self.step = -1 for o in self.outputs: o.write() self.step = 0 steptime = 0.0 simtime = time.time() cstep = 0 tptime = 0.0 tqtime = 0.0 tttime = 0.0 ttot = 0.0 # main MD loop for self.step in range(self.step,self.tsteps): # stores the state before doing a step. # this is a bit time-consuming but makes sure that we can honor soft # exit requests without screwing the trajectory steptime = -time.time() self.chk.store() self.ensemble.step() for o in self.outputs: o.write() if os.path.exists("EXIT"): # soft-exit self.rollback = False softexit.trigger() steptime += time.time() ttot += steptime tptime += self.ensemble.ptime tqtime += self.ensemble.qtime tttime += self.ensemble.ttime cstep += 1 if verbosity.high or (verbosity.medium and self.step%100 == 0) or (verbosity.low and self.step%1000 == 0): info(" # Average timings at MD step % 7d. t/step: %10.5e [p: %10.5e q: %10.5e t: %10.5e]" % ( self.step, ttot/cstep, tptime/cstep, tqtime/cstep, tttime/cstep ) ) cstep = 0 tptime = 0.0 tqtime = 0.0 tttime = 0.0 ttot = 0.0 info(" # MD diagnostics: V: %10.5e Kcv: %10.5e Ecns: %10.5e" % (self.properties["potential"], self.properties["kinetic_cv"], self.properties["conserved"] ) ) if (self.ttime > 0 and time.time() - simtime > self.ttime): info(" # Wall clock time expired! Bye bye!", verbosity.low ) break info(" # Simulation ran successfully for the prescribed total_step! Bye bye!", verbosity.low ) self.rollback = False softexit.trigger()
class System(dobject): """Physical system object. Contains all the physical information. Also handles stepping and output. Attributes: beads: A beads object giving the atom positions. cell: A cell object giving the system box. fcomp: A list of force components that must act on each replica forces: A Forces object that actually compute energy and forces ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. outputs: A list of output objects that should be printed during the run nm: A helper object dealing with normal modes transformation properties: A property object for dealing with property output. trajs: A trajectory object for dealing with trajectory output. init: A class to deal with initializing the system. simul: The parent simulation object. """ def __init__(self, init, beads, nm, cell, fcomponents, ensemble=None, motion=None, prefix=""): """Initialises System class. Args: init: A class to deal with initializing the system. beads: A beads object giving the atom positions. cell: A cell object giving the system box. fcomponents: A list of force components that are active for each replica of the system. bcomponents: A list of force components that are considered as bias, and act on each replica of the system. ensemble: An ensemble object giving the objects necessary for producing the correct ensemble. nm: A class dealing with path NM operations. prefix: A string used to differentiate the output files of different systems. """ info(" # Initializing system object ", verbosity.low) self.prefix = prefix self.init = init self.ensemble = ensemble self.motion = motion self.beads = beads self.cell = cell self.nm = nm self.fcomp = fcomponents self.forces = Forces() self.properties = Properties() self.trajs = Trajectories() def bind(self, simul): """Calls the bind routines for all the objects in the system.""" self.simul = simul # keeps a handle to the parent simulation object # binds important computation engines self.forces.bind(self.beads, self.cell, self.fcomp, self.simul.fflist) self.nm.bind(self.ensemble, self.motion, beads=self.beads, forces=self.forces) self.ensemble.bind(self.beads, self.nm, self.cell, self.forces, self.simul.fflist) self.motion.bind(self.ensemble, self.beads, self.nm, self.cell, self.forces, self.prng, simul.output_maker) dpipe(dd(self.nm).omegan2, dd(self.forces).omegan2) self.init.init_stage2(self) # binds output management objects self._propertylock = threading.Lock() self.properties.bind(self) self.trajs.bind(self)
class Ensemble(dobject): """Base ensemble class. Defines the thermodynamic state of the system. Depend objects: temp: The system's temperature. pext: The systems's pressure stressext: The system's stress tensor bias: Explicit bias forces """ def __init__(self, eens=0.0, econs=0.0, temp=None, pext=None, stressext=None, bcomponents=None, bweights=None, hweights=None, time=0.0): """Initialises Ensemble. Args: temp: The temperature. fixcom: An optional boolean which decides whether the centre of mass motion will be constrained or not. Defaults to False. """ dself = dd(self) dself.temp = depend_value(name='temp') if temp is not None: self.temp = temp else: self.temp = -1.0 dself.stressext = depend_array(name='stressext', value=np.zeros((3, 3), float)) if stressext is not None: self.stressext = np.reshape(np.asarray(stressext), (3, 3)) else: self.stressext = -1.0 dself.pext = depend_value(name='pext') if pext is not None: self.pext = pext else: self.pext = -1.0 dself.eens = depend_value(name='eens') if eens is not None: self.eens = eens else: self.eens = 0.0 # the bias force contains two bits: explicit biases (that are meant to represent non-physical external biasing potentials) # and hamiltonian weights (that will act by scaling different physical components of the force). Both are bound as components # of the "bias force" evaluator, but their meaning (and the wiring further down in bind()) differ. # these are the additional bias components if bcomponents is None: bcomponents = [] self.bcomp = bcomponents self.bias = Forces() # and their weights if bweights is None or len(bweights) == 0: bweights = np.ones(len(self.bcomp)) dself.bweights = depend_array(name="bweights", value=np.asarray(bweights)) # weights of the Hamiltonian scaling if hweights is None: hweights = np.ones(0) self.hweights = np.asarray(hweights) # Internal time counter dd(self).time = depend_value(name='time') self.time = time def bind(self, beads, nm, cell, bforce, fflist, elist=[], xlpot=[], xlkin=[]): self.beads = beads self.cell = cell self.forces = bforce self.nm = nm dself = dd(self) dself.econs = depend_value(name='econs', func=self.get_econs) # this binds just the explicit bias forces self.bias.bind(self.beads, self.cell, self.bcomp, fflist) dself.econs = depend_value(name='econs', func=self.get_econs) # dependencies of the conserved quantity dself.econs.add_dependency(dd(self.nm).kin) dself.econs.add_dependency(dd(self.forces).pot) dself.econs.add_dependency(dd(self.bias).pot) dself.econs.add_dependency(dd(self.nm).vspring) dself.econs.add_dependency(dself.eens) # pipes the weights to the list of weight vectors i = 0 for fc in self.bias.mforces: if fc.weight != 1: warning("The weight given to forces used in an ensemble bias are given a weight determined by bias_weight") dpipe(dself.bweights, dd(fc).weight, i) i += 1 # add Hamiltonian REM bias components if len(self.hweights) == 0: self.hweights = np.ones(len(self.forces.mforces)) dself.hweights = depend_array(name="hweights", value=np.asarray(self.hweights)) # we use ScaledForceComponents to replicate the physical forces without (hopefully) them being actually recomputed for ic in xrange(len(self.forces.mforces)): sfc = ScaledForceComponent(self.forces.mforces[ic], 1.0) self.bias.add_component(self.forces.mbeads[ic], self.forces.mrpc[ic], sfc) dd(sfc).scaling._func = lambda i=ic: self.hweights[i] - 1 dd(sfc).scaling.add_dependency(dself.hweights) self._elist = [] for e in elist: self.add_econs(e) dself.lpens = depend_value(name='lpens', func=self.get_lpens, dependencies=[dself.temp]) dself.lpens.add_dependency(dd(self.nm).kin) dself.lpens.add_dependency(dd(self.forces).pot) dself.lpens.add_dependency(dd(self.bias).pot) dself.lpens.add_dependency(dd(self.nm).vspring) # extended Lagrangian terms for the ensemble self._xlpot = [] for p in xlpot: self.add_xlpot(p) self._xlkin = [] for k in xlkin: self.add_xlkin(k) def add_econs(self, e): self._elist.append(e) dd(self).econs.add_dependency(e) def add_xlpot(self, p): self._xlpot.append(p) dd(self).lpens.add_dependency(p) def add_xlkin(self, k): self._xlkin.append(k) dd(self).lpens.add_dependency(k) def get_econs(self): """Calculates the conserved energy quantity for constant energy ensembles. """ eham = self.nm.vspring + self.nm.kin + self.forces.pot eham += self.bias.pot # bias for e in self._elist: eham += e.get() return eham + self.eens def get_lpens(self): """Returns the ensemble probability (modulo the partition function) for the ensemble. """ lpens = (self.forces.pot + self.bias.pot + self.nm.kin + self.nm.vspring); # inlcude terms associated with an extended Lagrangian integrator of some sort for p in self._xlpot: lpens += p.get() for k in self._xlkin: lpens += k.get() lpens *= -1.0 / (Constants.kb * self.temp * self.beads.nbeads) return lpens