def step(self, step=None): """ Does one simulation time step.""" activearrays = self.pre_step(step) # First construct complete hessian from reduced h0 = red2comp(activearrays["hessian"], self.im.dbeads.nbeads, self.im.dbeads.natoms, self.im.coef) # Add spring terms to the physical hessian h1 = np.add(self.im.h, h0) # Get eigenvalues and eigenvector. d, w = clean_hessian(h1, self.im.dbeads.q, self.im.dbeads.natoms, self.im.dbeads.nbeads, self.im.dbeads.m, self.im.dbeads.m3, self.options["hessian_asr"]) # d,w =np.linalg.eigh(h1) #Cartesian info('\n@Nichols: 1st freq {} cm^-1'.format(units.unit_to_user('frequency', 'inversecm', np.sign(d[0]) * np.sqrt(np.absolute(d[0])))), verbosity.medium) info('@Nichols: 2nd freq {} cm^-1'.format(units.unit_to_user('frequency', 'inversecm', np.sign(d[1]) * np.sqrt(np.absolute(d[1])))), verbosity.medium) info('@Nichols: 3rd freq {} cm^-1'.format(units.unit_to_user('frequency', 'inversecm', np.sign(d[2]) * np.sqrt(np.absolute(d[2])))), verbosity.medium) #info('@Nichols: 4th freq {} cm^-1'.format(units.unit_to_user('frequency','inversecm',np.sign(d[3])*np.sqrt(np.absolute(d[3])))),verbosity.medium) #info('@Nichols: 8th freq {} cm^-1\n'.format(units.unit_to_user('frequency','inversecm',np.sign(d[7])*np.sqrt(np.absolute(d[7])))),verbosity.medium) # Find new movement direction if self.options["mode"] == 'rate': f = activearrays["old_f"] * (self.im.coef[1:] + self.im.coef[:-1]) / 2 d_x = nichols(f, self.im.f, d, w, self.im.dbeads.m3, activearrays["big_step"]) elif self.options["mode"] == 'splitting': d_x = nichols(activearrays["old_f"], self.im.f, d, w, self.im.dbeads.m3, activearrays["big_step"], mode=0) # Rescale step if necessary if np.amax(np.absolute(d_x)) > activearrays["big_step"]: info("Step norm, scaled down to {}".format(activearrays["big_step"]), verbosity.low) d_x *= activearrays["big_step"] / np.amax(np.absolute(d_x)) # Get the new full-position d_x_full = self.fix.get_full_vector(d_x, t=1) new_x = self.optarrays["old_x"].copy() + d_x_full self.post_step(step, new_x, d_x, activearrays)
print("We can not recognize the mode. STOP HERE") sys.exit() # ----------------------------------------------------------START---------------------------------------------- beta = 1.0 / (kb * temp) betaP = 1.0 / (kb * (nbeads) * temp) print(("\nTemperature: {} K".format(temp / K2au))) print(("NBEADS: {}".format(nbeads))) print(("atoms: {}".format(natoms))) print(("ASR: {}".format(asr))) print(("1/(betaP*hbar) = {:8.5f}".format((1 / (betaP * hbar))))) if not quiet: print("Diagonalization ... \n\n") d, w, detI = clean_hessian(h, pos, natoms, nbeads, m, m3, asr, mofi=True) print("Final lowest 10 frequencies (cm^-1)") d10 = np.array2string( np.sign(d[0:10]) * np.absolute(d[0:10]) ** 0.5 / cm2au, precision=2, max_line_width=100, formatter={"float_kind": lambda x: "%.2f" % x}, ) print(("{}".format(d10))) if case == "reactant": Qtras = ((np.sum(m)) / (2 * np.pi * beta * hbar ** 2)) ** 1.5 if asr == "poly": Qrot = (8 * np.pi * detI / ((hbar) ** 6 * (beta) ** 3)) ** 0.5 else:
def step(self, step=None): """ Does one simulation time step.""" activearrays = self.pre_step(step) fff = activearrays["old_f"] * (self.im.coef[1:] + self.im.coef[:-1]) / 2 f = (fff + self.im.f).reshape(self.im.dbeads.natoms * 3 * self.im.dbeads.nbeads, 1) banded = False banded = True if banded: # BANDED Version # MASS-scaled dyn_mat = get_dynmat(activearrays["hessian"], self.im.dbeads.m3, self.im.dbeads.nbeads) h_up_band = banded_hessian(dyn_mat, self.im, masses=False, shift=0.000000001) # create upper band matrix f = np.multiply(f, self.im.dbeads.m3.reshape(f.shape)**-0.5) # CARTESIAN # h_up_band = banded_hessian(activearrays["hessian"], self.im,masses=True) # create upper band matrix d = diag_banded(h_up_band) else: # FULL dimensions version h_0 = red2comp(activearrays["hessian"], self.im.dbeads.nbeads, self.im.dbeads.natoms, self.im.coef) h_test = np.add(self.im.h, h_0) # add spring terms to the physical hessian d, w = clean_hessian(h_test, self.im.dbeads.q, self.im.dbeads.natoms, self.im.dbeads.nbeads, self.im.dbeads.m, self.im.dbeads.m3, None) # CARTESIAN # d,w =np.linalg.eigh(h_test) #Cartesian info('\n@Lanczos: 1st freq {} cm^-1'.format(units.unit_to_user('frequency', 'inversecm', np.sign(d[0]) * np.sqrt(np.absolute(d[0])))), verbosity.medium) info('@Lanczos: 2nd freq {} cm^-1'.format(units.unit_to_user('frequency', 'inversecm', np.sign(d[1]) * np.sqrt(np.absolute(d[1])))), verbosity.medium) info('@Lanczos: 3rd freq {} cm^-1\n'.format(units.unit_to_user('frequency', 'inversecm', np.sign(d[2]) * np.sqrt(np.absolute(d[2])))), verbosity.medium) if d[0] > 0: if d[1] / 2 > d[0]: alpha = 1 lamb = (2 * d[0] + d[1]) / 4 else: alpha = (d[1] - d[0]) / d[1] lamb = (3 * d[0] + d[1]) / 4 # midpoint between b[0] and b[1]*(1-alpha/2) elif d[1] < 0: # Jeremy Richardson if (d[1] >= d[0] / 2): alpha = 1 lamb = (d[0] + 2 * d[1]) / 4 else: alpha = (d[0] - d[1]) / d[1] lamb = (d[0] + 3 * d[1]) / 4 # elif d[1] < 0: #Litman for Second Order Saddle point # alpha = 1 # lamb = (d[1] + d[2]) / 4 # print 'WARNING: We are not using the standard Nichols' # print 'd_x', d_x[0],d_x[1] else: # Only d[0] <0 alpha = 1 lamb = (d[0] + d[1]) / 4 if banded: h_up_band[-1, :] += - np.ones(h_up_band.shape[1]) * lamb d_x = invmul_banded(h_up_band, f) else: h_test = alpha * (h_test - np.eye(h_test.shape[0]) * lamb) d_x = np.linalg.solve(h_test, f) d_x.shape = self.im.dbeads.q.shape # MASS-scaled d_x = np.multiply(d_x, self.im.dbeads.m3**-0.5) # Rescale step if necessary if np.amax(np.absolute(d_x)) > activearrays["big_step"]: info("Step norm, scaled down to {}".format(activearrays["big_step"]), verbosity.low) d_x *= activearrays["big_step"] / np.amax(np.absolute(d_x)) # Get the new full-position d_x_full = self.fix.get_full_vector(d_x, t=1) new_x = self.optarrays["old_x"].copy() + d_x_full self.post_step(step, new_x, d_x, activearrays)