示例#1
0
def options(X):

    style = {'description_width': 'initial'}  #general style settings

    #horizontal line widget
    HL = widgets.HTML(
        value=
        '<hr style="height:3px;border:none;color:#333;background-color:#333;" />'
    )

    M_title = widgets.HTML(value='<h3>Select data type:</h3>')
    M_widge = widgets.RadioButtons(
        options=['Magnetisations', 'Lower branch subtracted'],
        value='Lower branch subtracted',
        style=style)

    ### Horizontal smoothing ###
    S_title = widgets.HTML(value='<h3>Set smoothing parameters:</h3>')

    #SC widgets
    Sc_widge = widgets.IntRangeSlider(value=[2, 10],
                                      min=2,
                                      max=10,
                                      step=1,
                                      description='Select $s_c$ range:',
                                      continuous_update=False,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.0f',
                                      style=style)

    Sb_widge = widgets.IntRangeSlider(value=[2, 10],
                                      min=2,
                                      max=10,
                                      step=1,
                                      description='Select $s_u$ range:',
                                      continuous_update=False,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.0f',
                                      style=style)

    lambda_widge = widgets.FloatRangeSlider(
        value=[0.0, 0.2],
        min=0,
        max=0.2,
        step=0.04,
        description='Select $\lambda$ range:',
        disabled=False,
        continuous_update=False,
        orientation='horizontal',
        readout=True,
        readout_format='.2f',
        style=style)

    constraint_widge = widgets.Checkbox(value=False,
                                        description='Assume $Sc_0$ = $Su_0$',
                                        style=style)
    constraint_html = widgets.HTML(
        value=
        'Check <a href="https://forcaist.github.io/FORCaist.github.io/dfaq.html#AssumeS" target="_blank">FORCsensei FAQ</a> for more information about the &nbsp;Sc<sub>0</sub> = Su<sub>0</sub> option'
    )
    constraint_widge1 = widgets.Checkbox(value=False,
                                         description='Assume $Sc_1$ = $Su_1$',
                                         style=style)
    constraint_html1 = widgets.HTML(
        value=
        'Check <a href="https://forcaist.github.io/FORCaist.github.io/dfaq.html#AssumeS1" target="_blank">FORCsensei FAQ</a> for more information about the &nbsp;Sc<sub>1</sub> = Su<sub>1</sub> option'
    )

    pike_widge = widgets.Checkbox(
        value=False,
        description=
        'Assume $Sc_0$ = $Su_0$ = $Sc_1$ = $Su_1$ and $\lambda$ = 0',
        style=style)

    #find number of points in window of interest
    X['Hc'] = 0.5 * (X['H'] - X['Hr'])
    X['Hb'] = 0.5 * (X['H'] + X['Hr'])
    Hidx = np.argwhere(in_window(X, X['Hc'], X['Hb']) == True)
    H0 = X['Hc'][Hidx] + X['Hb'][Hidx]
    Hr0 = X['Hb'][Hidx] - X['Hc'][Hidx]

    down_title = widgets.HTML(value='<h3>Specify downsampling:</h3>')

    Npts = int(np.sum((np.abs(H0) < X['Hopen']) & (np.abs(Hr0) < X['Hopen'])))

    down_widge = widgets.IntSlider(value=np.minimum(Npts, 2000),
                                   min=100,
                                   max=Npts,
                                   step=1,
                                   description='Number of points:',
                                   disabled=False,
                                   continuous_update=False,
                                   orientation='horizontal',
                                   readout=True,
                                   readout_format='d',
                                   style=style)

    #display number of models to compare
    model_widge = widgets.interactive_output(
        variforc_array_size, {
            'SC': Sc_widge,
            'SB': Sb_widge,
            'L': lambda_widge,
            'CN': constraint_widge,
            'CN1': constraint_widge1,
            'PK': pike_widge
        })

    #display FAQ information about progress bar
    progress_html = widgets.HTML(
        value=
        'Model comparison can take some time, check <a href="https://forcaist.github.io/FORCaist.github.io/dfaq.html#progress" target="_blank">FORCsensei FAQ</a> for information about monitoring progress of the calculation'
    )

    #combined widget
    DS = VBox([down_title, down_widge])
    SC = VBox([
        M_title, M_widge, HL, S_title, Sc_widge, Sb_widge, lambda_widge,
        HBox([constraint_widge, constraint_html]),
        HBox([constraint_widge1, constraint_html1]), pike_widge, model_widge,
        progress_html
    ])

    ### Setup Multiprocessing tab ####################
    X['ncore'] = 4

    #header
    dask_title = widgets.HTML(value='<h3>DASK multiprocessing:</h3>')

    #selection widget
    dask_widge = widgets.IntSlider(value=X['ncore'],
                                   min=1,
                                   max=20,
                                   step=1,
                                   description='Number of DASK workers:',
                                   disabled=False,
                                   continuous_update=False,
                                   orientation='horizontal',
                                   readout=True,
                                   readout_format='d',
                                   style=style)

    dask_html = widgets.HTML(
        value=
        'Check <a href="https://forcaist.github.io/FORCaist.github.io/dfaq.html#dask_workers" target="_blank">FORCsensei FAQ</a> for more information about selecting Dask workers'
    )

    #final multiprocessing widget
    mpl_widge = VBox([dask_title, dask_widge, dask_html])

    ### CONSTRUCT TAB MENU #############
    method_nest = widgets.Tab()
    method_nest.children = [SC, DS, mpl_widge]
    method_nest.set_title(0, 'MODEL ENSEMBLE')
    method_nest.set_title(1, 'DOWNSAMPLING')
    method_nest.set_title(2, 'PROCESSING')

    display(method_nest)

    ### SETUP OUTPUT ####
    X['constraint'] = constraint_widge
    X['constraint1'] = constraint_widge1
    X['pike'] = pike_widge
    X['Mtype'] = M_widge
    X['SC'] = Sc_widge
    X['SB'] = Sb_widge
    X['lambda'] = lambda_widge
    X['Ndown'] = down_widge
    X['workers'] = dask_widge

    return X
示例#2
0
    def setting_accord():
        data_box = widgets.Box([
            widgets.Text(value='example: test_dat.csv',
                         description='Data Path:',
                         style={'description_width': 'initial'},
                         layout=Layout(flex='3 1 0%', width='auto')),
            widgets.Text(value='example: ~/images/',
                         description='Image Directory:',
                         style={'description_width': 'initial'},
                         layout=Layout(flex='3 1 0%', width='auto')),
            widgets.Text(value='',
                         description='Colname of Filename:',
                         style={'description_width': 'initial'}),
            widgets.Text(value='',
                         description='Colname of Label:',
                         style={'description_width': 'initial'})
        ],
                               layout=Layout(display='flex',
                                             flex_flow='column',
                                             align_items='stretch',
                                             width='80%'))

        preprocess_box = widgets.Box([
            widgets.HBox([
                widgets.Checkbox(value=False,
                                 description='Save split data',
                                 disabled=False),
                widgets.Checkbox(value=True,
                                 description='Image Augmentation',
                                 disabled=False)
            ]),
            widgets.RadioButtons(options=[(224, 224, 3), (299, 299, 3)],
                                 description='resize:'),
            widgets.FloatRangeSlider(value=(-1.0, 1.0),
                                     min=-1.0,
                                     max=1.0,
                                     description='Range of Normalization:',
                                     style={'description_width': 'initial'}),
            widgets.FloatSlider(value=0.2,
                                min=0.1,
                                max=1.0,
                                description='Validation Set:',
                                style={'description_width': 'initial'})
        ],
                                     layout=Layout(display='flex',
                                                   flex_flow='column',
                                                   align_items='stretch',
                                                   width='80%'))

        model_box = widgets.Box([
            widgets.Text(value='example: ./mymodel.h5',
                         description='Model Path:',
                         style={'description_width': 'initial'},
                         layout=Layout(flex='3 1 0%', width='auto')),
            widgets.Dropdown(options=['8', '16', '32', '64', '128'],
                             description='Batch size:'),
            widgets.Text(value='',
                         description='Prediction file path:',
                         style={'description_width': 'initial'},
                         layout=Layout(flex='3 1 0%', width='auto')),
        ],
                                layout=Layout(display='flex',
                                              flex_flow='column',
                                              align_items='stretch',
                                              width='50%'))

        tab_accord = widgets.Accordion(selected_index=None)
        tab_accord.children = [data_box, preprocess_box, model_box]
        tab_accord.set_title(0, 'Dataset')
        tab_accord.set_title(1, 'Preprocess')
        tab_accord.set_title(2, 'Model')

        return tab_accord
示例#3
0
    def interact(self, lc=None):
        """Display an interactive IPython Notebook widget to inspect the data.

        The widget will show both the lightcurve and pixel data.  By default,
        the lightcurve shown is obtained by calling the `to_lightcurve()` method,
        unless the user supplies a custom `LightCurve` object.

        Note: at this time, this feature only works inside an active Jupyter
        Notebook, and tends to be too slow when more than ~30,000 cadences
        are contained in the TPF (e.g. short cadence data).

        Parameters
        ----------
        lc : LightCurve object
            An optional pre-processed lightcurve object to show.
        """
        try:
            from ipywidgets import interact
            import ipywidgets as widgets
            from bokeh.io import push_notebook, show, output_notebook
            from bokeh.plotting import figure, ColumnDataSource
            from bokeh.models import Span, LogColorMapper
            from bokeh.layouts import row
            from bokeh.models.tools import HoverTool
            from IPython.display import display
            output_notebook()
        except ImportError:
            raise ImportError(
                'The quicklook tool requires Bokeh and ipywidgets. '
                'See the .interact() tutorial')

        ytitle = 'Flux'
        if lc is None:
            lc = self.to_lightcurve()
            ytitle = 'Flux (e/s)'

        # Bokeh cannot handle many data points
        # https://github.com/bokeh/bokeh/issues/7490
        if len(lc.cadenceno) > 30000:
            raise RuntimeError(
                'Interact cannot display more than 20000 cadences.')

        # Map cadence to index for quick array slicing.
        n_lc_cad = len(lc.cadenceno)
        n_cad, nx, ny = self.flux.shape
        lc_cad_matches = np.in1d(self.cadenceno, lc.cadenceno)
        if lc_cad_matches.sum() != n_lc_cad:
            raise ValueError(
                "The lightcurve provided has cadences that are not "
                "present in the Target Pixel File.")
        min_cadence, max_cadence = np.min(self.cadenceno), np.max(
            self.cadenceno)
        cadence_lookup = {cad: j for j, cad in enumerate(self.cadenceno)}
        cadence_full_range = np.arange(min_cadence,
                                       max_cadence,
                                       1,
                                       dtype=np.int)
        missing_cadences = list(set(cadence_full_range) - set(self.cadenceno))

        # Convert binary quality numbers into human readable strings
        qual_strings = []
        for bitmask in lc.quality:
            flag_str_list = KeplerQualityFlags.decode(bitmask)
            if len(flag_str_list) == 0:
                qual_strings.append(' ')
            if len(flag_str_list) == 1:
                qual_strings.append(flag_str_list[0])
            if len(flag_str_list) > 1:
                qual_strings.append("; ".join(flag_str_list))

        # Convert time into human readable strings, breaks with NaN time
        # See https://github.com/KeplerGO/lightkurve/issues/116
        if (self.time == self.time).all():
            human_time = self.astropy_time.isot[lc_cad_matches]
        else:
            human_time = [' '] * n_lc_cad

        # Each data source will later become a hover-over tooltip
        source = ColumnDataSource(data=dict(time=lc.time,
                                            time_iso=human_time,
                                            flux=lc.flux,
                                            cadence=lc.cadenceno,
                                            quality_code=lc.quality,
                                            quality=np.array(qual_strings)))

        # Provide extra metadata in the title
        if self.mission == 'K2':
            title = "Quicklook lightcurve for EPIC {} (K2 Campaign {})".format(
                self.keplerid, self.campaign)
        elif self.mission == 'Kepler':
            title = "Quicklook lightcurve for KIC {} (Kepler Quarter {})".format(
                self.keplerid, self.quarter)

        # Figure 1 shows the lightcurve with steps, tooltips, and vertical line
        fig1 = figure(title=title,
                      plot_height=300,
                      plot_width=600,
                      tools="pan,wheel_zoom,box_zoom,save,reset")
        fig1.yaxis.axis_label = ytitle
        fig1.xaxis.axis_label = 'Time - 2454833 days [BKJD]'
        fig1.step('time',
                  'flux',
                  line_width=1,
                  color='gray',
                  source=source,
                  nonselection_line_color='gray',
                  mode="center")

        r = fig1.circle('time',
                        'flux',
                        source=source,
                        fill_alpha=0.3,
                        size=8,
                        line_color=None,
                        selection_color="firebrick",
                        nonselection_fill_alpha=0.0,
                        nonselection_line_color=None,
                        nonselection_line_alpha=0.0,
                        fill_color=None,
                        hover_fill_color="firebrick",
                        hover_alpha=0.9,
                        hover_line_color="white")

        fig1.add_tools(
            HoverTool(tooltips=[("Cadence", "@cadence"),
                                ("Time (BKJD)", "@time{0,0.000}"),
                                ("Time (ISO)", "@time_iso"), ("Flux", "@flux"),
                                ("Quality Code", "@quality_code"),
                                ("Quality Flag", "@quality")],
                      renderers=[r],
                      mode='mouse',
                      point_policy="snap_to_data"))
        # Vertical line to indicate the cadence shown in Fig 2
        vert = Span(location=0,
                    dimension='height',
                    line_color='firebrick',
                    line_width=4,
                    line_alpha=0.5)
        fig1.add_layout(vert)

        # Figure 2 shows the Target Pixel File stamp with log screen stretch
        fig2 = figure(plot_width=300,
                      plot_height=300,
                      tools="pan,wheel_zoom,box_zoom,save,reset",
                      title='Pixel data (CCD {}.{})'.format(
                          self.module, self.output))
        fig2.yaxis.axis_label = 'Pixel Row Number'
        fig2.xaxis.axis_label = 'Pixel Column Number'

        pedestal = np.nanmin(self.flux[lc_cad_matches, :, :])
        stretch_dims = np.prod(self.flux[lc_cad_matches, :, :].shape)
        screen_stretch = self.flux[lc_cad_matches, :, :].reshape(
            stretch_dims) - pedestal
        screen_stretch = screen_stretch[np.isfinite(
            screen_stretch)]  # ignore NaNs
        screen_stretch = screen_stretch[screen_stretch > 0.0]
        vlo = np.min(screen_stretch)
        vhi = np.max(screen_stretch)
        vstep = (np.log10(vhi) -
                 np.log10(vlo)) / 300.0  # assumes counts >> 1.0!
        lo, med, hi = np.nanpercentile(screen_stretch, [1, 50, 95])
        color_mapper = LogColorMapper(palette="Viridis256", low=lo, high=hi)

        fig2_dat = fig2.image([self.flux[0, :, :] - pedestal],
                              x=self.column,
                              y=self.row,
                              dw=self.shape[2],
                              dh=self.shape[1],
                              dilate=False,
                              color_mapper=color_mapper)

        # The figures appear before the interactive widget sliders
        show(row(fig1, fig2), notebook_handle=True)

        # The widget sliders call the update function each time
        def update(cadence, log_stretch):
            """Function that connects to the interact widget slider values"""
            fig2_dat.glyph.color_mapper.high = 10**log_stretch[1]
            fig2_dat.glyph.color_mapper.low = 10**log_stretch[0]
            if cadence not in missing_cadences:
                index_val = cadence_lookup[cadence]
                vert.update(line_alpha=0.5)
                if self.time[index_val] == self.time[index_val]:
                    vert.update(location=self.time[index_val])
                else:
                    vert.update(line_alpha=0.0)
                fig2_dat.data_source.data['image'] = [
                    self.flux[index_val, :, :] - pedestal
                ]
            else:
                vert.update(line_alpha=0)
                fig2_dat.data_source.data['image'] = [
                    self.flux[0, :, :] * np.NaN
                ]
            push_notebook()

        # Define the widgets that enable the interactivity
        play = widgets.Play(interval=10,
                            value=min_cadence,
                            min=min_cadence,
                            max=max_cadence,
                            step=1,
                            description="Press play",
                            disabled=False)
        play.show_repeat, play._repeat = False, False
        cadence_slider = widgets.IntSlider(min=min_cadence,
                                           max=max_cadence,
                                           step=1,
                                           value=min_cadence,
                                           description='Cadence',
                                           layout=widgets.Layout(
                                               width='40%', height='20px'))
        screen_slider = widgets.FloatRangeSlider(
            value=[np.log10(lo), np.log10(hi)],
            min=np.log10(vlo),
            max=np.log10(vhi),
            step=vstep,
            description='Pixel Stretch (log)',
            style={'description_width': 'initial'},
            continuous_update=False,
            layout=widgets.Layout(width='30%', height='20px'))
        widgets.jslink((play, 'value'), (cadence_slider, 'value'))
        ui = widgets.HBox([play, cadence_slider, screen_slider])
        out = widgets.interactive_output(update, {
            'cadence': cadence_slider,
            'log_stretch': screen_slider
        })
        display(ui, out)
示例#4
0
    def create_widget(self):
        """Create widgets and their layout."""

        # Offset slider.
        off = widgets.interactive(
            self.update_off,
            off=widgets.IntSlider(
                min=500,
                max=10000,
                description='Offset (m)',
                value=self.model['rec'][0],
                step=250,
                continuous_update=False,
                style={'description_width': '60px'},
                layout={'width': '260px'},
            ),
        )

        # Pts/dec slider.
        pts_per_dec = widgets.interactive(
            self.update_pts_per_dec,
            pts_per_dec=widgets.IntSlider(
                min=1,
                max=10,
                description='pts/dec',
                value=self.pts_per_dec,
                step=1,
                continuous_update=False,
                style={'description_width': '60px'},
                layout={'width': '260px'},
            ),
        )

        # Linear/logarithmic selection.
        linlog = widgets.interactive(
            self.update_linlog,
            linlog=widgets.ToggleButtons(
                value=self.linlog,
                options=['linear', 'log'],
                description='Display',
                style={'description_width': '60px', 'button_width': '100px'},
            ),
        )

        # Frequency-range slider.
        freq_range = widgets.interactive(
            self.update_freq_range,
            freq_range=widgets.FloatRangeSlider(
                value=[np.log10(self.fmin), np.log10(self.fmax)],
                description='f-range',
                min=-4,
                max=3,
                step=0.1,
                continuous_update=False,
                style={'description_width': '60px'},
                layout={'width': '260px'},
            ),
        )

        # Signal selection (-1, 0, 1).
        signal = widgets.interactive(
            self.update_signal,
            signal=widgets.ToggleButtons(
                value=self.signal,
                options=[-1, 0, 1],
                description='Signal',
                style={'description_width': '60px', 'button_width': '65px'},
            ),
        )

        # Fourier transform method selection.
        def _get_init():
            """Return initial choice of Fourier Transform."""
            if self.ft == 'fftlog':
                return self.ft
            else:
                return self.ftarg['dlf'].savename

        ftfilt = widgets.interactive(
            self.update_ftfilt,
            ftfilt=widgets.Dropdown(
                options=['fftlog', 'key_81_CosSin_2009',
                         'key_241_CosSin_2009', 'key_601_CosSin_2009',
                         'key_101_CosSin_2012', 'key_201_CosSin_2012'],
                description='Fourier',
                value=_get_init(),  # Initial value
                style={'description_width': '60px'},
                layout={'width': 'max-content'},
            ),
        )

        # Group them together.
        t1col1 = widgets.VBox(children=[pts_per_dec, freq_range],
                              layout={'width': '310px'})
        t1col2 = widgets.VBox(children=[off, ftfilt],
                              layout={'width': '310px'})
        t1col3 = widgets.VBox(children=[signal, linlog],
                              layout={'width': '310px'})

        # Group them together.
        display(widgets.HBox(children=[t1col1, t1col2, t1col3]))
    def play_inline(fPath, **kw):
        '''
        For matplotlib inline mode.
        Generate an interactive 2D plot to play with
        x,y must be uniform spaced, autoflipped.
        '''
        # Data
        x, y, w, labels = read2d(fPath, **kw)
        if 'labels' not in kw:
            kw['labels'] = labels
        x0 = x[0]
        y0 = y[:, 0]
        xmin, xmax, dx = x[0, 0], x[0, -1], x[0, 1] - x[0, 0]
        ymin, ymax, dy = y[0, 0], y[-1, 0], y[1, 0] - y[0, 0]
        wmin, wmax = np.min(w), np.max(w)
        dw = (wmax - wmin) / 20

        # UI
        sxpos = widgets.FloatSlider(value=(xmin + xmax) / 2,
                                    min=xmin,
                                    max=xmax,
                                    step=dx,
                                    description='x')
        sypos = widgets.FloatSlider(value=(ymin + ymax) / 2,
                                    min=ymin,
                                    max=ymax,
                                    step=dy,
                                    description='y')
        vb1 = widgets.VBox([sxpos, sypos])
        sgamma = widgets.IntSlider(value=0,
                                   min=-100,
                                   max=100,
                                   step=10,
                                   description='gamma')
        svlim = widgets.FloatRangeSlider(value=[wmin, wmax],
                                         min=wmin,
                                         max=wmax,
                                         step=dw,
                                         description='limit')
        vb2 = widgets.VBox([sgamma, svlim])
        bexpMTX = widgets.Button(description='To mtx')
        htmlexp = widgets.HTML()
        vb3 = widgets.VBox([bexpMTX, htmlexp])
        ui = widgets.Tab(children=[vb1, vb2, vb3])
        [
            ui.set_title(i, j)
            for i, j in zip(range(3), ['linecuts', 'color', 'export'])
        ]

        # interactive funcion
        indx, indy = 0, 0

        def _play2d(xpos, ypos, gamma, vlim):
            nonlocal indx, indy
            # initialize the figure
            fig, axs = plt.subplots(1, 2, figsize=(6.5, 2.5),
                                    dpi=120)  #main plot and h linecut
            plt.subplots_adjust(wspace=0.4)
            axs[1].yaxis.tick_right()
            axs[1].tick_params(axis='x', colors='tab:orange')
            axs[1].tick_params(axis='y', colors='tab:orange')
            axv = fig.add_axes(axs[1].get_position(),
                               frameon=False)  #ax vertical linecut
            axv.xaxis.tick_top()
            axv.tick_params(axis='x', colors='tab:blue')
            axv.tick_params(axis='y', colors='tab:blue')
            # plot 2D data
            kw = {}
            kw['gamma'], kw['vmin'], kw['vmax'] = gamma, vlim[0], vlim[1]
            Painter.plot2d(x, y, w, fig=fig, ax=axs[0], **kw)
            # vlinecut
            indx = np.abs(x0 - xpos).argmin()  # x0 may be a non uniform array
            axs[0].plot(x[:, indx], y0, 'tab:blue')
            axv.plot(w[:, indx], y0, 'tab:blue')
            # hlinecut
            indy = np.abs(y0 - ypos).argmin()
            axs[0].plot(x0, y[indy, :], 'tab:orange')
            axs[1].plot(x0, w[indy, :], 'tab:orange')

        def _export(_):
            htmlexp.value = 'Saving...'
            fname = os.path.split(fPath)[1]
            fname = os.path.splitext(fname)[0]
            # vlincut
            fnamev = fname + '.vcut.%e.mtx' % x[0, indx]
            Data2d.saveMTX2d(fnamev, y0[np.newaxis], x[np.newaxis, :, indx],
                             w[np.newaxis, :,
                               indx], [labels[i] for i in [1, 0, 2]])
            # hlincut
            fnameh = fname + '.hcut.%e.mtx' % y[indy, 0]
            Data2d.saveMTX2d(fnameh, x0[np.newaxis], y[[indy], :],
                             w[[indy], :], labels)
            # 2d data
            fname2d = fname + '.mtx'
            Data2d.saveMTX2d(fname2d, x, y, w, labels)
            htmlexp.value = 'Files saved:<br>%s<br>%s<br>%s' % (fnamev, fnameh,
                                                                fname2d)

        out = widgets.interactive_output(_play2d, {
            'xpos': sxpos,
            'ypos': sypos,
            'gamma': sgamma,
            'vlim': svlim
        })
        bexpMTX.on_click(_export)
        display(ui, out)
示例#6
0
def makeplot(fileNameList,
             scaleList=[1],
             LineoutDir=None,
             Show_theory=None,
             DiffDir=None,
             specify_title=''):

    # This is the first filename
    filename = fileNameList[0]
    # Depending on what kind of data we are plotting, the best range of the colorbar and lineout is different

    if ('Species' in filename):
        colorBarDefaultRange = [-5, 0]
        colorBarTotalRange = [-10, 0]
        lineoutAxisRange = [-10, 0]
    elif ('Beam' in filename):
        colorBarDefaultRange = [-10, 0]
        colorBarTotalRange = [-50, 0]
        lineoutAxisRange = [-100, 0]
    elif ('Fields' in filename):
        colorBarDefaultRange = [-1, 1]
        colorBarTotalRange = [-5, 5]
        lineoutAxisRange = [-2, 2]

    for i in range(len(fileNameList)):
        f = h5py.File(fileNameList[i], 'r')
        k = list(f.keys())  # k = ['AXIS', 'charge_slice_xz']
        DATASET = f[k[1]]
        if (i == 0):
            data = np.array(DATASET) * scaleList[0]
        else:
            data += np.array(DATASET) * scaleList[i]

    AXIS = f[
        k[0]]  # AXIS is a group, which contains two datasets: AXIS1 and AXIS2

    LONG_NAME = DATASET.attrs['LONG_NAME']
    UNITS = DATASET.attrs['UNITS']

    title = LONG_NAME[0].decode('UTF-8')
    unit = UNITS[0].decode('UTF-8')

    figure_title = title + ' [$' + unit + '$]'
    if (specify_title != ''):
        figure_title = specify_title

    #### Read the axis labels and the corresponding units

    AXIS1 = AXIS['AXIS1']
    AXIS2 = AXIS['AXIS2']

    LONG_NAME1 = AXIS1.attrs['LONG_NAME']
    UNITS1 = AXIS1.attrs['UNITS']

    LONG_NAME2 = AXIS2.attrs['LONG_NAME']
    UNITS2 = AXIS2.attrs['UNITS']

    axisLabel1 = LONG_NAME1[0].decode('UTF-8')
    unit1 = UNITS1[0].decode('UTF-8')

    axisLabel2 = LONG_NAME2[0].decode('UTF-8')
    unit2 = UNITS2[0].decode('UTF-8')

    label_bottom = '$' + axisLabel2 + '$' + '  $[' + unit2 + ']$'
    label_left = '$' + axisLabel1 + '$' + '  $[' + unit1 + ']$'

    axis = list(AXIS)  # axis = ['AXIS1', 'AXIS2']

    xRange = np.array(f['AXIS/AXIS1'])
    xiRange = np.array(f['AXIS/AXIS2'])

    xLengthTotal = xRange[1] - xRange[0]
    zLengthTotal = xiRange[1] - xiRange[0]

    xCellsTotal = data.shape[1]
    zCellsTotal = data.shape[0]

    x = np.linspace(xRange[0], xRange[1], xCellsTotal)
    xi = np.linspace(xiRange[0], xiRange[1], zCellsTotal)

    # Determine the range of the lineout, depending on the direction of the lineout
    lineoutRange = [0, 0]
    if (LineoutDir == 'transverse'):
        lineoutRange = xiRange
    elif (LineoutDir == 'longitudinal'):
        lineoutRange = xRange / 2

    xLengthTotal = xRange[1] - xRange[0]
    zLengthTotal = xiRange[1] - xiRange[0]

    xCellsPerUnitLength = xCellsTotal / xLengthTotal
    zCellsPerUnitLength = zCellsTotal / zLengthTotal

    ##### If we need to take a derivative

    if (DiffDir == 'xi'):
        data = NDiff(data, xLengthTotal, zLengthTotal, Ddir='column')
    elif (DiffDir == 'r'):
        data = NDiff(data, xLengthTotal, zLengthTotal, Ddir='row')

    #####

    dataT = data.transpose()

    colormap = 'viridis'

    def plot(colorBarRange, lineout_position):

        fig, ax1 = plt.subplots(figsize=(8, 5))
        # Zoom in / zoom out the plot
        ax1.axis([xi.min(), xi.max(), x.min() / 2, x.max() / 2])
        ###

        ax1.set_title(figure_title)

        cs1 = ax1.pcolormesh(xi,
                             x,
                             dataT,
                             vmin=colorBarRange[0],
                             vmax=colorBarRange[1],
                             cmap=colormap)

        fig.colorbar(cs1, pad=0.15)
        ax1.set_xlabel(label_bottom)

        #Make the y-axis label, ticks and tick labels match the line color.
        ax1.set_ylabel(label_left, color='k')
        ax1.tick_params('y', colors='k')

        if (LineoutDir == 'longitudinal'):
            ax2 = ax1.twinx()
            middle_index = int(dataT.shape[0] / 2)
            lineout_index = int(middle_index +
                                lineout_position * xCellsPerUnitLength)
            lineout = dataT[lineout_index, :]
            ax2.plot(xi, lineout, 'r')

            if (Show_theory == 'focus'):
                # plot the 1/2 slope line (theoretical focusing force)
                focusing_force_theory = -1 / 2 * lineout_position * np.ones(
                    dataT.shape[1])
                ax2.plot(xi, focusing_force_theory, 'r--', label='F = -1/2 r')
                ax2.legend()

            ax2.set_ylim(lineoutAxisRange)
            ax1.plot(xi, lineout_position * np.ones(dataT.shape[1]),
                     'b--')  # Add a dashed line at the lineout position
            ax2.tick_params('y', colors='r')
        elif (LineoutDir == 'transverse'):
            ax2 = ax1.twiny()
            lineout_index = int(lineout_position * zCellsPerUnitLength)
            lineout = dataT[:, lineout_index]
            ax2.plot(lineout, x, 'r')

            if (Show_theory == 'focus'):
                # plot the 1/2 slope line (theoretical focusing force)
                focusing_force_theory = -1 / 2 * x
                ax2.plot(focusing_force_theory, x, 'r--', label='F = -1/2 r')
                ax2.legend()

            ax2.set_xlim(lineoutAxisRange)
            ax1.plot(lineout_position * np.ones(dataT.shape[0]), x, 'b--')
            ax2.tick_params('x', colors='r')

        if (Show_theory == 'bubble_boundary'):
            boundary = getBubbleBoundary(filename)
            ax1.plot(boundary[0], boundary[1], 'k--', label='bubble boundary')


#         if(Show_theory == 'Ez'):
#             boundary = getBubbleBoundary('rundir/Species0001/Charge_slice_0001/charge_slice_xz_00000001.h5')
#             xii = boundary[0]
#             rb = boundary[1]

#             Delta_l = 1.1
#             Delta_s = 0.0
#             alpha = Delta_l/rb + Delta_s
#             beta = ((1+alpha)**2 * np.log((1+alpha)**2))/((1+alpha)**2-1)-1

#             psi0 = rb**2/4 * (1+beta)
#             Ez = Nd(xi,psi0)
#             Ez = smooth(Ez)
#             ax2.plot(xii,Ez,'r--',label='theory')
#             ax2.legend()

        fig.tight_layout()

        return

    i1 = interact(plot,
                  colorBarRange=widgets.FloatRangeSlider(
                      value=colorBarDefaultRange,
                      min=colorBarTotalRange[0],
                      max=colorBarTotalRange[1],
                      step=0.1,
                      description='Colorbar:',
                      continuous_update=False),
                  lineout_position=FloatSlider(min=lineoutRange[0],
                                               max=lineoutRange[1],
                                               step=0.05,
                                               description='lineout position:',
                                               continuous_update=False))
    return
示例#7
0
    def __init__(self):
        img_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "")
        img_tstat = os.path.join(img_path, "thermostat.png")
        self._img_tstat_open = open(img_tstat, "rb").read()
        self._tstat = ipw.Image(
            value=self._img_tstat_open,
            format='png',
            width=240,
            height=240,
        )
        form_item_layout = ipw.Layout(display='flex',
                                      flex_flow='row',
                                      width='100%',
                                      justify_content='flex-start')
        self.observe(self._updateslider, 'hsp')
        self.observe(self._updateslider, 'csp')

        self.spslider = ipw.FloatRangeSlider(min=60,
                                             max=85,
                                             step=1.0,
                                             value=[self.hsp, self.csp],
                                             continuous_update=True,
                                             orientation='horizontal')
        self.spslider.observe(self._updatesetpoints, 'value')

        self.tempsensor = ipw.Label(value='{0:.2f}'.format(self.temp))
        self.observe(self._updatetemp, 'temp')

        self.oatsensor = ipw.Label(value='{0:.2f}'.format(self.oat))

        self.statedisplay = ipw.Label(value=self.state)
        self.observe(self._updatestate, 'state')
        self.statedisplay.observe(self._updatestatedisplay, 'value')

        self.occupiedisplay = ipw.Label(value='{0}'.format(self.occupied))
        self.observe(self._update_occupancy, 'occupied')

        def occupancy_square_wave():
            i = 0
            while True:
                i = (i + 1) % 20
                time.sleep(1)
                self.occupied = i > 10

        occthread = threading.Thread(target=occupancy_square_wave)
        occthread.start()

        def thermostat_temp_wave():
            i = 0
            while True:
                i = (i + 1) % 180
                time.sleep(1)
                adjust = -.2 if self.state == 'Cooling' else .2 if self.state == 'Heating' else 0
                self.oat = 80 + 20 * math.sin(math.radians(i))
                self.temp = self.temp + adjust + (self.oat - self.temp) * .01

        tempthread = threading.Thread(target=thermostat_temp_wave)
        tempthread.start()

        form_items = [
            ipw.VBox([self._tstat]),
            ipw.VBox([
                ipw.Box(
                    [ipw.Label(value='Outside Temperature: '), self.oatsensor],
                    layout=form_item_layout),
                ipw.Box(
                    [ipw.Label(value='Inside Temperature: '), self.tempsensor],
                    layout=form_item_layout),
                ipw.Box([ipw.Label(value='Setpoints: '), self.spslider],
                        layout=form_item_layout),
                ipw.Box([ipw.Label(value='State: '), self.statedisplay],
                        layout=form_item_layout),
                ipw.Box([ipw.Label(value='Occupied? '), self.occupiedisplay],
                        layout=form_item_layout),
            ]),
        ]

        super(Thermostat, self).__init__()

        self.layout.display = 'flex'
        self.layout.flex_flow = 'row'
        self.layout.border = 'solid 2px'
        #self.layout.align_items = 'center'
        #self.width = '50%'
        self.children = form_items
示例#8
0
class SpeckWidget:
    weights_W = ipywidgets.FloatRangeSlider(value=[0, 1],
                                            min=0,
                                            max=1,
                                            steps=0.01,
                                            description='Line Weight')

    weight_clipping_W = ipywidgets.FloatRangeSlider(
        value=[0, 1], min=0, max=1, steps=0.01, description='Weight Clipping')

    noise_profile_W = ipywidgets.Dropdown(
        value='parallel',
        options=['parallel', 'reflect', 'independent'],
        description='Noise Profile',
    )
    noise_scale_W = ipywidgets.FloatSlider(value=0.5,
                                           min=0,
                                           max=2,
                                           steps=0.05,
                                           description='Noise Scale')
    noise_wave_count_W = ipywidgets.IntSlider(value=3,
                                              min=1,
                                              max=6,
                                              steps=1,
                                              description='Wave Count')
    noise_base_freq_W = ipywidgets.FloatSlider(value=3,
                                               min=1,
                                               max=10,
                                               steps=0.5,
                                               description='Base Frequency')
    noise_freq_factor_W = ipywidgets.FloatRangeSlider(
        value=[1, 3],
        min=0,
        max=10,
        steps=0.5,
        description='Frequency Multipliers')
    noise_phase_offset_range_W = ipywidgets.FloatRangeSlider(
        value=[0, 2],
        min=0,
        max=360,
        steps=15,
        description='Phase Offset (degrees)')
    colour_top_W = ipywidgets.ColorPicker(concise=True,
                                          description='Top Colour',
                                          value='white',
                                          disabled=False)
    colour_bot_W = ipywidgets.ColorPicker(concise=True,
                                          description='Bottom Colour',
                                          value='red',
                                          disabled=False)

    def __init__(self, speck_plot):
        self.speck_plot = speck_plot

    def _widget_func(
        self,
        weights,
        weight_clipping,
        noise_profile,
        noise_scale,
        noise_wave_count,
        noise_base_freq,
        noise_freq_factor,
        noise_phase_offset_range,
        colour_top,
        colour_bot,
    ):
        noise = SineNoise(
            profile=noise_profile,
            scale=noise_scale,
            wave_count=noise_wave_count,
            base_freq=noise_base_freq,
            freq_factor=noise_freq_factor,
            phase_offset_range=noise_phase_offset_range,
        )

        colour = GradientColour((colour_top, colour_bot))

        return self.speck_plot.draw(
            weights=weights,
            weight_clipping=weight_clipping,
            noise=noise,
            colour=colour,
            seed=1,
        )

    def interact(self, plot_kwargs):

        return ipywidgets.interact(
            self._widget_func,
            weights=self.weights_W,
            weight_clipping=self.weight_clipping_W,
            noise_profile=self.noise_profile_W,
            noise_scale=self.noise_scale_W,
            noise_wave_count=self.noise_wave_count_W,
            noise_base_freq=self.noise_base_freq_W,
            noise_freq_factor=self.noise_freq_factor_W,
            noise_phase_offset_range=self.noise_phase_offset_range_W,
            colour_top=self.colour_top_W,
            colour_bot=self.colour_bot_W,
        )
示例#9
0
    description='Flat Model'
    ),
'flat_type': widgets.SelectMultiple(
    options=hdbdata['flat_type'].unique(),
    value=list(hdbdata['flat_type'].unique()),
    description='Flat Type'
    ),
'storey_range': widgets.SelectMultiple(
    options=hdbdata['storey_range'].unique(),
    value=list(hdbdata['storey_range'].unique()),
    description='Storeys'
    ),
'floor_area_sqm': widgets.FloatRangeSlider(
    value=[hdbdata['floor_area_sqm'].min(), hdbdata['floor_area_sqm'].max()],
    min=hdbdata['floor_area_sqm'].min(),
    max=hdbdata['floor_area_sqm'].max(),
    step=1,
    description='Floor Area (sqm):',
    layout=Layout(width='100%')
    ),
'remaining_lease': widgets.FloatRangeSlider(
    value=[hdbdata['remaining_lease'].min(), hdbdata['remaining_lease'].max()],
    min=hdbdata['remaining_lease'].min(),
    max=hdbdata['remaining_lease'].max(),
    step=1,
    description='Remaining Lease (years):',
    layout=Layout(width='100%')
    ),
'year': widgets.SelectionRangeSlider(
    options=[(i,i) for i in hdbdata['year'].unique()],
    index=(0, hdbdata['year'].unique().size-1),
    description='Year of transaction',
示例#10
0
def image_constast_editor_ipy(obj, **kwargs):
    wdict = {}
    left = ipywidgets.FloatText(disabled=True, description="Vmin")
    right = ipywidgets.FloatText(disabled=True, description="Vmax")
    bins = ipywidgets.IntText(description="Bins")
    norm = ipywidgets.Dropdown(options=("Linear", "Power", "Log", "Symlog"),
                               description="Norm",
                               value=obj.norm)
    percentile = ipywidgets.FloatRangeSlider(
        value=[0.0, 100.0],
        min=0.0,
        max=100.0,
        step=0.1,
        description="Vmin/vmax percentile",
        readout_format='.1f')
    gamma = ipywidgets.FloatSlider(1.0, min=0.1, max=3.0, description="Gamma")
    linthresh = ipywidgets.FloatSlider(0.01,
                                       min=0.001,
                                       max=1.0,
                                       step=0.001,
                                       description="Linear threshold")
    linscale = ipywidgets.FloatSlider(0.1,
                                      min=0.001,
                                      max=10.0,
                                      step=0.001,
                                      description="Linear scale")
    auto = ipywidgets.Checkbox(True, description="Auto")
    help_text = ipywidgets.HTML(IMAGE_CONTRAST_EDITOR_HELP_IPYWIDGETS)
    wdict["help_text"] = help_text
    help = ipywidgets.Accordion(children=[help_text], selected_index=None)
    set_title_container(help, ["Help"])
    close = ipywidgets.Button(description="Close", tooltip="Close widget.")
    apply = ipywidgets.Button(
        description="Apply",
        tooltip="Use the selected range to re-calculate the histogram.")
    reset = ipywidgets.Button(
        description="Reset",
        tooltip="Reset the settings to their initial values.")
    wdict["left"] = left
    wdict["right"] = right
    wdict["bins"] = bins
    wdict["norm"] = norm
    wdict["percentile"] = percentile
    wdict["gamma"] = gamma
    wdict["linthresh"] = linthresh
    wdict["linscale"] = linscale
    wdict["auto"] = auto
    wdict["close_button"] = close
    wdict["apply_button"] = apply
    wdict["reset_button"] = reset

    def transform_vmin(value):
        return (value, percentile.upper)

    def transform_vmin_inv(value):
        return value[0]

    def transform_vmax(value):
        return (percentile.lower, value)

    def transform_vmax_inv(value):
        return value[1]

    # Connect
    link((obj, "ss_left_value"), (left, "value"))
    link((obj, "ss_right_value"), (right, "value"))
    link((obj, "bins"), (bins, "value"))
    link((obj, "norm"), (norm, "value"))
    link((obj, "vmin_percentile"), (percentile, "value"),
         (transform_vmin, transform_vmin_inv))
    link((obj, "vmax_percentile"), (percentile, "value"),
         (transform_vmax, transform_vmax_inv))
    link((obj, "gamma"), (gamma, "value"))
    link((obj, "linthresh"), (linthresh, "value"))
    link((obj, "linscale"), (linscale, "value"))
    link((obj, "auto"), (auto, "value"))

    def display_parameters(change):
        # Necessary for the initialisation
        v = change if isinstance(change, str) else change.new
        if v == "Symlog":
            linthresh.layout.display = ""
            linscale.layout.display = ""
        else:
            linthresh.layout.display = "none"
            linscale.layout.display = "none"
        if v == "Power":
            gamma.layout.display = ""
        else:
            gamma.layout.display = "none"

    display_parameters(obj.norm)
    norm.observe(display_parameters, "value")

    def disable_parameters(change):
        # Necessary for the initialisation
        v = change if isinstance(change, bool) else change.new
        percentile.disabled = not v

    disable_parameters(obj.auto)
    auto.observe(disable_parameters, "value")

    def on_apply_clicked(b):
        obj.apply()

    apply.on_click(on_apply_clicked)

    def on_reset_clicked(b):
        obj.reset()

    reset.on_click(on_reset_clicked)

    box = ipywidgets.VBox([
        left,
        right,
        auto,
        percentile,
        bins,
        norm,
        gamma,
        linthresh,
        linscale,
        help,
        ipywidgets.HBox((apply, reset, close)),
    ])

    def on_close_clicked(b):
        obj.close()
        box.close()

    close.on_click(on_close_clicked)
    return {
        "widget": box,
        "wdict": wdict,
    }
from aicssegmentation.core.visual import blob2dExplorer_single, fila2dExplorer_single, random_colormap
from aicssegmentation.core.seg_dot import dot_2d, logSlice
from aicssegmentation.core.vessel import filament_2d_wrapper
from aicssegmentation.core.utils import hole_filling
from aicssegmentation.core.pre_processing_utils import intensity_normalization, suggest_normalization_param, edge_preserving_smoothing_3d

fn = '/Users/claytonwandishin/UNC_PCNA/161124 u2os #5 ncs 6NCS_0_1c1.tif'
os.path.isfile(fn)

tif = TiffFile(fn)

num_img = len(tif.pages)
print(num_img)

img_seq = []
for ii in range(num_img):
    img_seq.append(imread(fn, key=ii))
img = img_seq[135]
suggest_normalization_param(img)
img_norm = intensity_normalization(img, [0.5, 8.0])
img_smooth = edge_preserving_smoothing_3d(img_norm)
interact(blob2dExplorer_single, im=fixed(img_smooth), \
         sigma=widgets.FloatRangeSlider(value=(1,5), min=1, max=15,step=1,continuous_update=False),  \
         th=widgets.FloatSlider(value=0.02,min=0.01, max=0.1, step=0.01,continuous_update=False))
ksize = (65, 65)
blur_smooth = cv2.blur(np.float32(img_smooth), ksize)
nuc_detection = dot_2d(blur_smooth, 11)
nuc_mask = nuc_detection > 0.0015
final_seg = hole_filling(remove_small_objects(nuc_mask), .5, 2500)
plt.imshow(final_seg)
示例#12
0
from ipywidgets import interact, interactive, fixed
from IPython.core.display import HTML
from IPython.display import display, clear_output
from plotly.widgets import GraphWidget

styles = '''<style>.widget-hslider { width: 100%; }
    .widget-hbox { width: 100% !important; }
    .widget-slider { width: 100% !important; }</style>'''

HTML(styles)

#this widget will display our plotly chart
graph = GraphWidget("https://plot.ly/~chriddyp/674")
fig = py.get_figure("https://plot.ly/~chriddyp/674")

#find the range of the slider.
xmin, xmax = fig['layout']['xaxis']['range']


# use the interact decorator to tie a widget to the listener function
@interact(y=widgets.FloatRangeSlider(min=xmin,
                                     max=xmax,
                                     step=(xmax - xmin) / 1000.0,
                                     continuous_update=False))
def update_plot(y):
    graph.relayout({'xaxis.range[0]': y[0], 'xaxis.range[1]': y[1]})


#display the app
graph
示例#13
0
def plot_metrics_summary(  # noqa: C901
    metrics_results,
    target_meas_keys=[],
    target_meas_limits=[],
    n_bins_target=30,
    save_path=None,
    context="talk",
    interactive=False,
):
    """Plot metrics directly from the MetricsGenerator output.

    Args:
        metrics_results (dict): Output of a MetricsGenerator.
        target_meas_keys (list): List of the keys for the target measures.
        target_meas_limits (list): List of tuples indicating the limits for the plots
                                   of the target measures
        n_bins_target (int): Number of bins for the target measure plots
        save_path (str): Path to the folder where the figures should be saved.
        context (str): Context for seaborn; see seaborn documentation for details.
                        Can be one of "paper", "notebook", "talk", and "poster".
        interactive (bool): Specifies if the plot should be interactive.

    """
    sns.set_context(context)
    # Keys corresponding to the measure functions
    measure_keys = list(metrics_results["galaxy_summary"].keys())

    # We need to handle the multiresolution case
    if isinstance(metrics_results["galaxy_summary"][measure_keys[0]], dict):
        survey_keys = list(
            metrics_results["galaxy_summary"][measure_keys[0]].keys())
        gal_summary_keys = list(metrics_results["galaxy_summary"][
            measure_keys[0]][survey_keys[0]].keys())
        multiresolution = True
        # Limits for widgets
        min_mag = np.min(metrics_results["galaxy_summary"][measure_keys[0]][
            survey_keys[0]]["ref_mag"])
        max_mag = np.max(metrics_results["galaxy_summary"][measure_keys[0]][
            survey_keys[0]]["ref_mag"])
        min_size = np.min(metrics_results["galaxy_summary"][measure_keys[0]][
            survey_keys[0]]["btk_size"])
        max_size = np.max(metrics_results["galaxy_summary"][measure_keys[0]][
            survey_keys[0]]["btk_size"])
    else:
        gal_summary_keys = list(
            metrics_results["galaxy_summary"][measure_keys[0]].keys())
        multiresolution = False
        min_mag = np.min(
            metrics_results["galaxy_summary"][measure_keys[0]]["ref_mag"])
        max_mag = np.max(
            metrics_results["galaxy_summary"][measure_keys[0]]["ref_mag"])
        min_size = np.min(
            metrics_results["galaxy_summary"][measure_keys[0]]["btk_size"])
        max_size = np.max(
            metrics_results["galaxy_summary"][measure_keys[0]]["btk_size"])
    plot_keys = ["reconstruction", "segmentation", "eff_matrix"
                 ] + target_meas_keys + ["custom"]

    if interactive:
        layout = widgets.Layout(width="auto")
        # Checkboxes for selecting the measure function
        measure_functions_dict = {
            key: widgets.Checkbox(description=key, value=False, layout=layout)
            for key in measure_keys
        }
        measure_functions = [
            measure_functions_dict[key] for key in measure_keys
        ]
        measure_functions_widget = widgets.VBox(measure_functions)
        measure_title_widget = widgets.HTML("<em>Measure functions</em>")
        measure_vbox = widgets.VBox(
            [measure_title_widget, measure_functions_widget])
        # Checkboxes for selecting the survey (if multiresolution)
        if multiresolution:
            surveys_dict = {
                key: widgets.Checkbox(description=key,
                                      value=False,
                                      layout=layout)
                for key in survey_keys
            }
            surveys = [surveys_dict[key] for key in survey_keys]
            surveys_widget = widgets.VBox(surveys)
            surveys_title_widget = widgets.HTML("<em>Surveys</em>")
            surveys_vbox = widgets.VBox([surveys_title_widget, surveys_widget])
            measure_surveys_widget = widgets.VBox([measure_vbox, surveys_vbox])
        else:
            measure_surveys_widget = measure_vbox
        # Sliders to filter based on parameters
        blendedness_widget = widgets.FloatRangeSlider(
            description="Blendedness",
            value=[0, 1.0],
            min=0,
            max=1.0,
            step=0.01,
            continuous_update=False,
        )
        magnitude_widget = widgets.FloatRangeSlider(
            description="Magnitude",
            value=[min_mag, max_mag],
            min=min_mag,
            max=max_mag,
            step=0.01,
            continuous_update=False,
        )
        size_widget = widgets.FloatRangeSlider(
            description="Size",
            value=[min_size, max_size],
            min=min_size,
            max=max_size,
            step=0.01,
            continuous_update=False,
        )
        filter_vbox = widgets.VBox(
            [blendedness_widget, magnitude_widget, size_widget])
        # Checkboxes for selecting which metrics will be plotted
        plot_selection_dict = {
            key: widgets.Checkbox(description=key, value=False)
            for key in plot_keys
        }
        plot_selection = [plot_selection_dict[key] for key in plot_keys]
        plot_selection_widget = widgets.VBox(plot_selection)
        # Dropdowns for selecting the parameters for the custom plot
        custom_x_widget_drop = widgets.Dropdown(
            options=gal_summary_keys,
            description="X coordinate value",
            layout=layout,
        )
        custom_y_widget_drop = widgets.Dropdown(
            options=gal_summary_keys,
            description="Y coordinate value",
            layout=layout,
        )
        custom_x_widget_log = widgets.Checkbox(description="Log scale",
                                               value=False,
                                               layout=layout)
        custom_x_widget = widgets.HBox(
            [custom_x_widget_drop, custom_x_widget_log])
        custom_y_widget_log = widgets.Checkbox(description="Log scale",
                                               value=False,
                                               layout=layout)
        custom_y_widget = widgets.HBox(
            [custom_y_widget_drop, custom_y_widget_log])

        plot_selection_vbox = widgets.VBox(plot_selection +
                                           [custom_x_widget, custom_y_widget])

        hbox = widgets.HBox(
            [measure_surveys_widget, filter_vbox, plot_selection_vbox])
        display(hbox)

    # This function is called everytime the values of the widget change, and at the start
    def draw_plots(value):
        # If there are no widgets we use default values, else we get all the values
        if interactive:
            clear_output()
            display(hbox)
            meas_func_names = [
                w.description for w in measure_functions_widget.children
                if w.value
            ]
            if multiresolution:
                surveys = [
                    w.description for w in surveys_widget.children if w.value
                ]
            blendedness_limits = blendedness_widget.value
            mag_limits = magnitude_widget.value
            size_limits = size_widget.value
            custom_x = custom_x_widget_drop.value
            custom_y = custom_y_widget_drop.value
            custom_x_log = custom_x_widget_log.value
            custom_y_log = custom_y_widget_log.value
            plot_selections = {
                w.description: w.value
                for w in plot_selection_widget.children
            }
        else:
            meas_func_names = measure_keys
            if multiresolution:
                surveys = survey_keys
            blendedness_limits = [0, 1]
            mag_limits = [min_mag, max_mag]
            size_limits = [min_size, max_size]
            plot_selections = {w: True for w in plot_keys}
            plot_selections["custom"] = False

        # If no measure function (or no surveys if multiresolution) is ticked, plot nothing
        if len(meas_func_names) == 0:
            return 0
        if multiresolution and len(surveys) == 0:
            return 0

        # Group all the data into a dataframe for using seaborn
        if multiresolution:
            dataframes = {}
            couples = []
            for f_name in meas_func_names:
                for s_name in surveys:
                    couples.append(f_name + "_" + s_name)
                    dataframes[f_name + "_" + s_name] = metrics_results[
                        "galaxy_summary"][f_name][s_name].to_pandas()
            concatenated = pd.concat(
                [dataframes[c].assign(measure_function=c) for c in couples])
        else:
            dataframes = {}
            for f_name in meas_func_names:
                dataframes[f_name] = metrics_results["galaxy_summary"][
                    f_name].to_pandas()
            concatenated = pd.concat([
                dataframes[f_name].assign(measure_function=f_name)
                for f_name in meas_func_names
            ])

        # Filter the data for the different parameters
        concatenated = concatenated.loc[
            (concatenated["blendedness"] >= blendedness_limits[0])
            & (concatenated["blendedness"] <= blendedness_limits[1])]
        concatenated = concatenated.loc[
            (concatenated["ref_mag"] >= mag_limits[0])
            & (concatenated["ref_mag"] <= mag_limits[1])]
        concatenated = concatenated.loc[
            (concatenated["btk_size"] >= size_limits[0])
            & (concatenated["btk_size"] <= size_limits[1])]
        for k in target_meas_keys:
            concatenated["delta_" +
                         k] = concatenated[k] - concatenated[k + "_true"]

        # Custom scatter plot for the two chosen quantities
        if plot_selections["custom"]:
            fig, ax = plt.subplots(figsize=(15, 15))
            sns.scatterplot(data=concatenated,
                            x=custom_x,
                            y=custom_y,
                            hue="measure_function",
                            ax=ax)
            if custom_x_log:
                ax.set_xscale("log")
            if custom_y_log:
                ax.set_yscale("log")
            plt.show()

        # Histograms for the reconstruction metrics
        if "msr" in concatenated and plot_selections["reconstruction"]:
            fig, ax = plt.subplots(3, 1, figsize=(20, 30))
            fig.suptitle("Distribution of reconstruction metrics", fontsize=48)
            sns.histplot(concatenated,
                         x="msr",
                         hue="measure_function",
                         bins=30,
                         ax=ax[0],
                         log_scale=True)
            ax[0].set_xlabel("Mean square residual")
            sns.histplot(concatenated,
                         x="psnr",
                         hue="measure_function",
                         bins=30,
                         ax=ax[1])
            ax[1].set_xlabel("Peak Signal-to-Noise Ratio")
            sns.histplot(concatenated,
                         x="ssim",
                         hue="measure_function",
                         bins=30,
                         ax=ax[2])
            ax[2].set_xlabel("Structure Similarity Index")
            if save_path is not None:
                plt.savefig(
                    os.path.join(save_path,
                                 "distributions_reconstruction.png"))
            plt.show()

        # Histograms for the segmentation metrics
        if "iou" in concatenated and plot_selections["segmentation"]:
            fig, ax = plt.subplots(figsize=(20, 10))
            fig.suptitle("Distribution of segmentation metrics", fontsize=48)
            sns.histplot(concatenated,
                         x="iou",
                         hue="measure_function",
                         ax=ax,
                         bins=30)
            ax.set_xlabel("Intersection-over-Union")
            if save_path is not None:
                plt.savefig(
                    os.path.join(save_path, "distributions_segmentation.png"))
            plt.show()

        # Plots for the measure functions
        selected_target_meas = [
            m for m in target_meas_keys if plot_selections[m]
        ]
        if selected_target_meas != []:
            n_target_meas = len(selected_target_meas)
            height_ratios = list(
                np.concatenate([[3, 1] for i in range(n_target_meas)]))
            fig, ax = plt.subplots(
                2 * n_target_meas,
                1,
                figsize=(10, 13.33 * n_target_meas),
                gridspec_kw={"height_ratios": height_ratios},
            )
            fig.suptitle("Target measures", fontsize=48)

            for i, k in enumerate(selected_target_meas):
                sns.scatterplot(
                    data=concatenated,
                    x=k,
                    y=k + "_true",
                    hue="measure_function",
                    ax=ax[2 * i],
                    marker="o",
                    alpha=0.7,
                )
                ax[2 * i].set(
                    xlabel="Measured " + k,
                    ylabel="True " + k,
                    xlim=target_meas_limits[i],
                    ylim=target_meas_limits[i],
                )
                xlow, xhigh = ax[2 * i].get_xlim()
                x = np.linspace(xlow, xhigh, 10)
                ax[2 * i].plot(x, x, linestyle="--", color="black", zorder=-10)

                mag_low = np.min(concatenated["ref_mag"])
                mag_high = np.max(concatenated["ref_mag"])
                for meas_func in measure_keys:
                    bins = np.linspace(mag_low, mag_high, n_bins_target)
                    labels = np.digitize(concatenated["ref_mag"], bins)
                    means = []
                    stds = []
                    to_delete = []
                    for j in range(1, n_bins_target):
                        mean = np.mean(concatenated["delta_" + k][
                            (labels == j)
                            & (concatenated["measure_function"] == meas_func)])
                        if not np.isnan(mean):
                            means.append(mean)
                            stds.append(
                                np.std(concatenated["delta_" + k]
                                       [(labels == j)
                                        & (concatenated["measure_function"] ==
                                           meas_func)]))
                        else:
                            to_delete.append(j)
                    bins = np.delete(bins, to_delete)
                    ax[2 * i + 1].errorbar(
                        bins[1:] - (mag_high - mag_low) / n_bins_target, means,
                        stds)

                ax[2 * i + 1].plot(
                    np.linspace(mag_low, mag_high, 10),
                    np.zeros((10)),
                    linestyle="--",
                    color="black",
                    zorder=-10,
                )
                ax[2 * i + 1].set_xlabel("Magnitude")  # noqa: W605
                ax[2 * i + 1].set_ylabel(f"$\\Delta${k}")  # noqa: W605
            plt.tight_layout()

            if save_path is not None:
                plt.savefig(
                    os.path.join(save_path, "scatter_target_measures.png"))
            plt.show()

        # Plotting the efficiency matrices
        if plot_selections["eff_matrix"]:
            fig, ax = plt.subplots(1,
                                   len(meas_func_names),
                                   figsize=(15 * len(meas_func_names), 15))
            fig.suptitle("Efficiency matrices", fontsize=48)
            if len(meas_func_names) == 1:
                ax = [ax]
            for i, k in enumerate(meas_func_names):
                if multiresolution:
                    plot_efficiency_matrix(metrics_results["detection"][k][
                        survey_keys[0]]["eff_matrix"],
                                           ax=ax[i])
                else:
                    plot_efficiency_matrix(
                        metrics_results["detection"][k]["eff_matrix"],
                        ax=ax[i])
                ax[i].set_title(k)
            if save_path is not None:
                plt.savefig(os.path.join(save_path, "efficiency_matrices.png"))
            plt.show()

    # Set the widgets to update the plots if modified
    if interactive:
        blendedness_widget.observe(draw_plots, "value")
        magnitude_widget.observe(draw_plots, "value")
        size_widget.observe(draw_plots, "value")
        for k in measure_keys:
            measure_functions_dict[k].observe(draw_plots, "value")
        if multiresolution:
            for k in survey_keys:
                surveys_dict[k].observe(draw_plots, "value")
        for k in plot_keys:
            plot_selection_dict[k].observe(draw_plots, "value")
        custom_x_widget_drop.observe(draw_plots, "value")
        custom_y_widget_drop.observe(draw_plots, "value")
        custom_x_widget_log.observe(draw_plots, "value")
        custom_y_widget_log.observe(draw_plots, "value")
    else:
        draw_plots(None)
def cfs_dsp(coeff, tables, n_eqn, y_lm, line_nms, tbl_horz=0):
    """
INPUTS
tables           (list of df's)  summary table's
ceoff            (list of df's)  input data
line_nms         (list of strings) legend entry names
y_lm             (int) upper y limit of the plot

OUTPUTS
Plot and Tables Displayed with interactive widgets

    """
    # Layout of each widget
    box_hlayout = ipw.Layout(display='flex',
                             flex_flow='row',
                             align_items='stretch',
                             width='95%')

    box_vlayout = ipw.Layout(display='flex',
                             flex_flow='column',
                             align_items='stretch',
                             width='10%',
                             height='auto',
                             justify_content='space-between')

    if n_eqn == 1:
        # Coefficient selection widget
        coeff_sel = ipw.IntSlider(min=1,
                                  max=coeff[0].shape[1],
                                  value=1,
                                  step=1,
                                  description='Coefficient:',
                                  width='auto',
                                  layout=box_hlayout,
                                  style={'description_width': 'initial'})
    elif n_eqn > 1:
        # Coefficient selection widget
        coeff_sel = ipw.IntSlider(min=1,
                                  max=coeff[0][0].shape[1],
                                  value=1,
                                  step=1,
                                  description='Coefficient:',
                                  width='auto',
                                  layout=box_hlayout,
                                  style={'description_width': 'initial'})
    # Equation selection widget
    eqn_sel = ipw.IntSlider(min=1,
                            max=n_eqn,
                            value=1,
                            step=1,
                            description='Equation:',
                            width='auto',
                            layout=box_hlayout,
                            style={'description_width': 'initial'})
    # PU bandwidth constant selection widget
    ch_sel = ipw.FloatSlider(min=0.1,
                             max=3,
                             value=2.5,
                             step=0.2,
                             description='Bandwidth Constant',
                             width='auto',
                             layout=box_hlayout,
                             style={'description_width': 'initial'})
    # Horizontal display range slider widget
    xlim_sel = ipw.FloatRangeSlider(value=[-0.4, 0.4],
                                    min=-1,
                                    max=1,
                                    step=0.05,
                                    description='x limits:',
                                    disabled=False,
                                    continuous_update=False,
                                    orientation='horizontal',
                                    readout=True,
                                    readout_format='.1f',
                                    width='auto',
                                    layout=box_hlayout,
                                    style={'description_width': 'initial'})

    ylim_sel = ipw.FloatSlider(min=0,
                               max=15,
                               value=y_lm,
                               step=1,
                               description='y limits',
                               orientation='vertical',
                               length='auto',
                               layout=box_vlayout,
                               style={'description_length': 'initial'},
                               readout=False)

    # Interactive call of density function plot
    coeff_out = ipw.interactive_output(
        coeffden, {
            'coeff': ipw.fixed(coeff),
            'line_nms': ipw.fixed(line_nms),
            'x_lm': xlim_sel,
            'y_lm': ylim_sel,
            'c_h': ch_sel,
            'w': coeff_sel,
            'n_eqn': ipw.fixed(n_eqn),
            's_eqn': eqn_sel
        })
    # Interactive call of table display function
    table_out = ipw.interactive_output(
        tbl_dsp, {
            'tables': ipw.fixed(tables),
            'n_eqn': ipw.fixed(n_eqn),
            's_eqn': eqn_sel,
            'line_nms': ipw.fixed(line_nms),
            'horz': ipw.fixed(tbl_horz)
        })
    # Return of the constructed block with widgetes and tables.
    if n_eqn == 1:
        return ipw.VBox([
            table_out,
            ipw.HBox([coeff_out, ylim_sel]), coeff_sel, ch_sel, xlim_sel
        ])
    else:
        return ipw.VBox([
            table_out,
            ipw.HBox([coeff_out, ylim_sel]), coeff_sel, ch_sel, xlim_sel,
            eqn_sel
        ])
示例#15
0
def Laplace():
    """
		Main function called by notebook to produce plots and UI
	"""

    # for ax lim sliders
    tAbsLim = 20
    sAbsLim = 20

    # define widgets
    tlim_sldr = widgets.FloatRangeSlider(value=[-10, 10],
                                         step=0.1,
                                         min=-tAbsLim,
                                         max=tAbsLim,
                                         description='t lim',
                                         continuous_update=False)
    slim_sldr = widgets.FloatRangeSlider(value=[-10, 10],
                                         step=0.1,
                                         min=-sAbsLim,
                                         max=sAbsLim,
                                         description='s lim',
                                         continuous_update=False)
    fslim_sldr = widgets.FloatRangeSlider(value=[0, 5],
                                          step=0.1,
                                          min=-5,
                                          max=5,
                                          description='F(s) lim',
                                          continuous_update=False)
    tShift_sldr = widgets.FloatSlider(value=0,
                                      step=0.1,
                                      min=-2,
                                      max=2,
                                      description='Shift t',
                                      continuous_updating=False)
    sShift_sldr = widgets.FloatSlider(value=0,
                                      step=0.1,
                                      min=-2,
                                      max=2,
                                      description='Shift s',
                                      continuous_updating=False)
    func_drop = widgets.Dropdown(options={
        't^n': 'Poly',
        'sin(w*t)': 'Sine',
        'cos(w*t)': 'Cos',
        'exp(at)': 'exp'
    },
                                 layout=widgets.Layout(width='220px'),
                                 description='$f(t)=$')

    # display
    display(
        widgets.VBox([
            widgets.HBox([
                widgets.VBox([tlim_sldr, slim_sldr]),
                widgets.VBox([tShift_sldr, sShift_sldr]),
                widgets.VBox([fslim_sldr, func_drop])
            ]),
            widgets.interactive_output(
                showLaplace, {
                    'slim': slim_sldr,
                    'tlim': tlim_sldr,
                    'func': func_drop,
                    'tShift': tShift_sldr,
                    'fslim': fslim_sldr,
                    'sShift': sShift_sldr
                })
        ]))
示例#16
0
def islicer(data,
            direction,
            title="",
            slice_number=None,
            cmap='gray',
            minmax=None,
            size=None,
            axis_labels=None):
    '''Creates an interactive integer slider that slices a 3D volume along direction
    
    :param data: DataContainer or numpy array
    :param direction: slice direction, int, should be 0,1,2 or the axis label
    :param title: optional title for the display
    :slice_number: int start slice number, optional. If None defaults to center slice
    :param cmap: matplotlib color map
    :param minmax: colorbar min and max values, defaults to min max of container
    :param size: int or tuple specifying the figure size in inch. If int it specifies the width and scales the height keeping the standard matplotlib aspect ratio 
    '''

    if axis_labels is None:
        if hasattr(data, "dimension_labels"):
            axis_labels = [
                data.dimension_labels[0], data.dimension_labels[1],
                data.dimension_labels[2]
            ]
        else:
            axis_labels = ['X', 'Y', 'Z']

    if isinstance(data, numpy.ndarray):
        container = data
    elif hasattr(data, "__getitem__"):
        container = data
    elif hasattr(data, "as_array"):
        container = data.as_array()

    if not isinstance(direction, int):
        if direction in data.dimension_labels.values():
            direction = data.get_dimension_axis(direction)

    if slice_number is None:
        slice_number = int(data.shape[direction] / 2)

    slider = widgets.IntSlider(min=0,
                               max=data.shape[direction] - 1,
                               step=1,
                               value=slice_number,
                               continuous_update=False,
                               description=axis_labels[direction])
    amax = container.max()
    amin = container.min()
    if minmax is None:
        cmax = amax
        cmin = amin
    else:
        cmin = min(minmax)
        cmax = max(minmax)

    if isinstance(size, (int, float)):
        default_ratio = 6. / 8.
        size = (size, size * default_ratio)

    min_max = widgets.FloatRangeSlider(
        value=[cmin, cmax],
        min=amin,
        max=amax,
        step=(amax - amin) / 100.,
        description='display window',
        disabled=False,
        continuous_update=False,
        orientation='horizontal',
        readout=True,
        readout_format='.1e',
    )
    interact(
        display_slice(
            container,
            direction,
            title=title,
            cmap=cmap,
            # minmax=(amin, amax),
            size=size,
            axis_labels=axis_labels),
        x=slider,
        minmax=min_max)

    return slider
示例#17
0
def gradient():
    func = widgets.Dropdown(\
        options=['Ex_4','Ex_5'],\
        value='Ex_4',\
        description='Select Example')

    model = widgets.RadioButtons(\
        options=['gradient descent (min)', 'gradient ascent(max)'],\
        description='Model Option:',\
        continuous_update=False,\
        disabled=False)
    
    iteration = widgets.IntSlider(\
        value = 0,\
        min=0,\
        max=20,\
        step=1,\
        description='Iteration number:',\
        disabled=False,\
        continuous_update=False)
    
    step = widgets.BoundedFloatText(\
        value=0.1,\
        min=0.01,\
        max=0.2,\
        step=0.01,\
        description='step size for gradient ascent/descent',\
        continuous_update=False,\
        disabled=False)
    
    # spatial sliders
    xzoom = widgets.FloatRangeSlider(\
        value=[-1.2,1.2],\
        min=-2.,\
        max=2.,\
        step=0.1,\
        continuous_update=False,\
        description='x range for contour plot')
    
    yzoom = widgets.FloatRangeSlider(\
        value=[-1.2,1.2],\
        min=-2,\
        max=2.,\
        step=0.1,\
        continuous_update=False,\
        description='y range for contour plot')
    
    view_grad = widgets.Checkbox(\
        value=False,\
        description='View gradient vector field')
    
    # point at which to evaluate partial derivatives
    pt_x = widgets.BoundedFloatText(\
        value=0.,\
        min=-2.,\
        max=2.,\
        step=0.1,\
        description='x coordinate of starting point',\
        continuous_update=False,\
        disabled=False)
    
    pt_y = widgets.BoundedFloatText(\
        value=0.,\
        min=-2.,\
        max=2.,\
        step=0.1,\
        description='y coordinate of starting point',\
        continuous_update=False,\
        disabled=False)
    
    # interactive output
    return widgets.VBox([widgets.HBox([func]),\
        widgets.HBox([model,iteration,step]),\
        widgets.HBox([xzoom,yzoom,view_grad]),\
        widgets.HBox([pt_x,pt_y]),\
        widgets.interactive_output(gradient_run,\
        {'func':func,'model':model,'iteration':iteration,'step':step,\
        'xzoom':xzoom,'yzoom':yzoom,'view_grad':view_grad,'pt_x':pt_x,'pt_y':pt_y})])
示例#18
0
    def setup_controls(self):
        down = ipywidgets.Button(icon="arrow-down",
                layout=ipywidgets.Layout(width='auto', grid_area="down"))
        up = ipywidgets.Button(icon="arrow-up",
                layout=ipywidgets.Layout(width='auto', grid_area="up"))
        right = ipywidgets.Button(icon="arrow-right",
                layout=ipywidgets.Layout(width='auto', grid_area="right"))
        left = ipywidgets.Button(icon="arrow-left",
                layout=ipywidgets.Layout(width='auto', grid_area="left"))
        zoom_start = 1./(self.view_width[0])
        # By setting the dynamic range to be the ratio between coarsest and
        # finest, we ensure that at the fullest zoom, our smallest point will
        # be the size of our biggest point at the outermost zoom.
        dynamic_range = (max(self.pdx.max(), self.pdy.max()) /
                         min(self.pdx.min(), self.pdy.min()))

        zoom = ipywidgets.FloatSlider(min=0.5, max=dynamic_range, step=0.1,
                value=zoom_start, description="Zoom",
                layout=ipywidgets.Layout(width="auto", grid_area="zoom"))
        is_log = ipywidgets.Checkbox(value=False, description="Log colorscale")
        colormaps = ipywidgets.Dropdown(
                options=list(self.colormaps.cmaps.keys()),
                description="colormap",
                value = "viridis")
        min_val = ipywidgets.BoundedFloatText(description="lower colorbar bound:",
                value=self.val.min(), min=self.val.min(), max=self.val.max())
        max_val = ipywidgets.BoundedFloatText(description="upper colorbar bound:",
                value=self.val.max(), min=self.val.min(), max=self.val.max())
        minmax = ipywidgets.FloatRangeSlider(min=self.val.min(), max=self.val.max())


        down.on_click(self.on_ydownclick)
        up.on_click(self.on_yupclick)
        right.on_click(self.on_xrightclick)
        left.on_click(self.on_xleftclick)
        zoom.observe(self.on_zoom, names='value')
        # These can be jslinked, so we will do so.
        ipywidgets.jslink((is_log, 'value'), (self.colormaps, 'is_log'))
        ipywidgets.jslink((min_val, 'value'), (self.colormaps, 'min_val'))
        ipywidgets.jslink((max_val, 'value'), (self.colormaps, 'max_val'))
        # This one seemingly cannot be.
        ipywidgets.link((colormaps, 'value'), (self.colormaps, 'map_name'))

        nav_buttons = ipywidgets.GridBox(children = [up, left, right, down],
                         layout=ipywidgets.Layout(width='100%',
                                    grid_template_columns = '33% 34% 33%',
                                    grid_template_rows = 'auto auto auto',
                                    grid_template_areas = '''
                                    " . up . "
                                    " left . right "
                                    " . down . "
                                    ''',
                                    grid_area='nav_buttons'))

        all_navigation = ipywidgets.GridBox(children = [nav_buttons, zoom],
                layout=ipywidgets.Layout(width="300px",
                    grid_template_columns="25% 50% 25%",
                    grid_template_rows="auto auto",
                    grid_template_areas='''
                    ". nav_buttons ."
                    "zoom zoom zoom"
                    '''
                    ))

        all_normalizers = ipywidgets.GridBox(children = [is_log,
                colormaps, min_val, max_val],
                layout=ipywidgets.Layout(width="auto")
                )

        accordion = ipywidgets.Accordion(children=[all_navigation,
            all_normalizers])

        accordion.set_title(0, 'navigation')
        accordion.set_title(1, 'colormap controls')

        return accordion
示例#19
0
def plot_pupil_ipy(tx,
                   sy,
                   event_onsets=None,
                   overlays=None,
                   overlay_labels=None,
                   blinks=None,
                   interpolated=None,
                   figsize=(16, 8),
                   xlab="ms",
                   nsteps=100):
    """
    Plotting with interactive adjustment of plotting window.
    To use this, do

    $ pip install ipywidgets
    $ jupyter nbextension enable --py widgetsnbextension
    $ jupyter labextension install @jupyter-widgets/jupyterlab-manager

    Parameters
    ----------
    
    tx : np.ndarray
        time-vector in seconds    
    sy : np.ndarray
        raw pupil signal        
    event_onsets : list
        onsets of events (stimuli/responses) in seconds
    overlays: tuple of np.array
        signals to overlay over the plot, given as tuple of arrays of same length as `tx`
    overlay_labels: tuple of strings
        labels for the overlays to be displayed in the legend
    figsize: tuple of int
        dimensions for the plot
    xlab: str
        label for x-axis
    nsteps: int
        number of steps for slider
    """
    import pylab as plt
    from ipywidgets import interact, interactive, fixed, interact_manual, Layout
    import ipywidgets as widgets

    def draw_plot(plotxrange):
        xmin, xmax = plotxrange
        ixmin = np.argmin(np.abs(tx - xmin))
        ixmax = np.argmin(np.abs(tx - xmax))
        plt.figure(figsize=figsize)

        plt.plot(tx[ixmin:ixmax], sy[ixmin:ixmax], label="signal")
        if overlays is not None:
            if type(overlays) is np.ndarray:
                plt.plot(tx[ixmin:ixmax],
                         overlays[ixmin:ixmax],
                         label=overlay_labels)
            else:
                for i, overlay in enumerate(overlays):
                    lab = overlay_labels[
                        i] if overlay_labels is not None else None
                    plt.plot(tx[ixmin:ixmax], overlay[ixmin:ixmax], label=lab)
        for istart, iend in interpolated:
            plt.gca().axvspan(tx[istart], tx[iend], color="green", alpha=0.1)
        for istart, iend in blinks:
            plt.gca().axvspan(tx[istart], tx[iend], color="red", alpha=0.1)

        plt.vlines(event_onsets, *plt.ylim(), color="grey", alpha=0.5)
        plt.xlim(xmin, xmax)
        plt.xlabel(xlab)
        if overlay_labels is not None:
            plt.legend()

    wid_range = widgets.FloatRangeSlider(value=[tx.min(), tx.max()],
                                         min=tx.min(),
                                         max=tx.max(),
                                         step=(tx.max() - tx.min()) / nsteps,
                                         description=' ',
                                         disabled=False,
                                         continuous_update=False,
                                         orientation='horizontal',
                                         readout=True,
                                         readout_format='.1f',
                                         layout=Layout(width='100%',
                                                       height='80px'))

    interact(draw_plot, plotxrange=wid_range)
示例#20
0
    def make_tab(image_fn):
        def generate_figure(highlight, vertical_range, contrast, invert, show_expected, window_size, notes):
            fig = plot_gel(image_fn,
                           highlight=highlight,
                           vertical_range=vertical_range,
                           contrast=contrast,
                           invert=invert,
                           show_expected=show_expected,
                           window_size=window_size,
                           **kwargs)
            fig.axes[1].annotate(notes,
                                 xy=(0, 1),
                                 xycoords='axes fraction',
                                 xytext=(5, 2),
                                 textcoords='offset points',
                                 ha='left',
                                 va='bottom',
                                 size=8,
                                )
            plt.show()
            return fig

        annotations = load_annotations(image_fn)
        labels = annotations.get('labels', [])
    
        default_filename = str(Path.home() / Path(image_fn).with_suffix('.png').name)

        widgets = {
            'vertical_range': ipywidgets.FloatRangeSlider(
                value=[0, 1],
                continuous_update=False,
                min=0,
                max=1,
                step=0.01,
                layout=ipywidgets.Layout(height='200px'),
                description='Vertical range:',
                style={'description_width': 'initial'},
                orientation='vertical',
            ),
            'window_size': ipywidgets.IntSlider(
                value=10,
                continuous_update=False,
                min=1,
                max=30,
                step=1,
                layout=ipywidgets.Layout(height='200px'),
                description='Window size:',
                style={'description_width': 'initial'},
                orientation='vertical',
            ),
            'highlight': ipywidgets.SelectMultiple(
                options=labels,
                value=[],
                layout=ipywidgets.Layout(height='200px'),
                description='Highlight:',
            ),
            'contrast': ipywidgets.FloatSlider(
                value=1.0,
                continuous_update=False,
                min=0,
                max=1,
                step=0.05,
                layout=ipywidgets.Layout(height='200px'),
                description='Contrast:',
                style={'description_width': 'initial'},
                orientation='vertical',
            ),
            'invert': ipywidgets.ToggleButton(
                value=False,
                description='Invert',
                icon='check',
            ),
            'show_expected': ipywidgets.Dropdown(
                options={'neither': False,
                         'plot': 'plot',
                         'image': 'image',
                         'both': 'both',
                        },
                value=False,
                description='Show expected',
            ),
            'save': ipywidgets.Button(
                description='Save snapshot',
            ),
            'file_name': ipywidgets.Text(
                value=default_filename,
            ),
            'close': ipywidgets.Button(
                description='Close tab',
            ),
            'notes': ipywidgets.Textarea(
                description='Notes:',
                layout=ipywidgets.Layout(height='200px', width='400px'),
            ),
            'labels': ipywidgets.Textarea(
                description='Lane labels:',
                layout=ipywidgets.Layout(height='200px', width='400px'),
            ),
            'expected': ipywidgets.Textarea(
                description='Expected:',
                layout=ipywidgets.Layout(height='200px', width='400px'),
            ),
            'update': ipywidgets.Button(
                description='Update',
            ),
        }

        def save(_):
            fig = interactive.result
            fn = widgets['file_name'].value
            fig.savefig(fn, bbox_inches='tight')

        widgets['save'].on_click(save)
        
        def close(_):
            titles = [tabs.get_title(i) for i, c in enumerate(tabs.children) if i != tabs.selected_index]
            tabs.children = [c for i, c in enumerate(tabs.children) if i != tabs.selected_index]
            for i, title in enumerate(titles):
                tabs.set_title(i, title)

        widgets['close'].on_click(close)

        interactive = ipywidgets.interactive(generate_figure, **widgets)
        output = interactive.children[-1]
        interactive.update()

        widgets['invert'].value = annotations.get('invert', False)
        widgets['contrast'].value = annotations.get('contrast', 1.0)
        widgets['window_size'].value = annotations.get('window_size', 10)
        widgets['notes'].value = annotations.get('notes', '')
        widgets['labels'].value = '\n'.join(annotations.get('labels', []))
        expected = annotations.get('expected', {})
        lines = ['{0}: {1}'.format(length, name) for length, name in sorted(expected.items())]
        widgets['expected'].value = '\n'.join(lines)

        def update_annotations(_):
            def get_lines(key):
                lines = [str(v) for v in widgets[key].value.split('\n')]
                if lines == ['']:
                    lines = []
                return lines

            annotations['notes'] = str(widgets['notes'].value)

            labels = get_lines('labels')
            widgets['highlight'].options = labels

            expected = {}
            for line in get_lines('expected'):
                length, name = line.split(': ')
                length = int(length)
                expected[length] = name
            
            annotations['expected'] = expected
            annotations['labels'] = labels
            annotations['invert'] = widgets['invert'].value
            annotations['contrast'] = widgets['contrast'].value
            annotations['window_size'] = widgets['window_size'].value

            save_annotations(image_fn, annotations)
            interactive.update()

        widgets['update'].on_click(update_annotations)

        def group_widgets(keys, kind):
            if kind == 'row':
                Box = ipywidgets.HBox
            elif kind == 'col':
                Box = ipywidgets.VBox

            keys = [widgets.get(k, k) for k in keys]

            return Box(keys)

        make_row = lambda keys: group_widgets(keys, 'row')
        make_col = lambda keys: group_widgets(keys, 'col')

        layout = make_col([
            make_row([output]),
            make_row(['highlight',
                      'vertical_range',
                      'contrast',
                      'window_size',
                      make_col([
                          'invert',
                      ]),
                      make_col([
                          'save',
                          'close',
                          'update',
                      ]),
                      make_col([
                          'file_name',
                          'show_expected',
                      ]),
                     ]),
            make_row(['labels',
                      'expected',
                      'notes',
                     ]),
        ])

        return layout 
示例#21
0
    def controls(self):
        from .layers import VALID_STRETCHES, UI_COLORMAPS

        if self._controls is not None:
            return self._controls

        opacity = widgets.FloatSlider(description='Opacity:',
                                      value=self.opacity,
                                      min=0,
                                      max=1,
                                      readout=False,
                                      step=0.01,
                                      layout={'width': '200px'})
        link((self, 'opacity'), (opacity, 'value'))

        stretch = widgets.Dropdown(description='Stretch:',
                                   options=VALID_STRETCHES,
                                   value=self.stretch,
                                   layout={'width': '200px'})
        link((self, 'stretch'), (stretch, 'value'))

        # NB, this will crash if `self.cmap` is not one of our allowed values
        reverse_ui_colormaps = dict(
            (kv[1], kv[0]) for kv in UI_COLORMAPS.items())
        colormap = widgets.Dropdown(description='Colormap:',
                                    options=UI_COLORMAPS.keys(),
                                    value=reverse_ui_colormaps[self.cmap.name],
                                    layout={'width': '200px'})
        directional_link((colormap, 'label'), (self, 'cmap'),
                         lambda x: UI_COLORMAPS[x])
        directional_link((self, 'cmap'), (colormap, 'label'),
                         lambda x: reverse_ui_colormaps[x.name])

        vrange = widgets.FloatRangeSlider(description='Fine min/max:',
                                          value=[self.vmin, self.vmax],
                                          min=self._data_min,
                                          max=self._data_max,
                                          readout=True,
                                          layout={'width': '600px'},
                                          step=(self.vmax - self.vmin) / 100,
                                          format='.3g')

        # Linkage must be manual since vrange uses a pair of values whereas we
        # have two separate traitlets.
        vrange.observe(self._vrange_slider_updated, names=['value'])

        def update_vrange(change):
            # Note: when this function is called, these values are indeed updated.
            vrange.value = (self.vmin, self.vmax)

        self.observe(update_vrange, names=['vmin', 'vmax'])

        def update_step(change):
            vrange.step = (vrange.max - vrange.min) / 100

        vrange.observe(update_step, names=['min', 'max'])

        coarse_min = widgets.FloatText(description='Coarse min:',
                                       value=self._data_min,
                                       layout={'width': '300px'})
        link((coarse_min, 'value'), (vrange, 'min'))

        coarse_max = widgets.FloatText(description='Coarse max:',
                                       value=self._data_max,
                                       layout={'width': '300px'})
        link((coarse_max, 'value'), (vrange, 'max'))

        self._controls = widgets.VBox([
            widgets.HBox([colormap, stretch, opacity]),
            widgets.HBox([coarse_min, coarse_max]),
            vrange,
        ])
        return self._controls
示例#22
0
 def __init__(self, npkd, pkname):
     if not isinstance(npkd, FTMSData):
         raise Exception('This modules requires a FTMS Dataset')
     self.npkd = npkd
     self.pkname = pkname
     self.zoom = widgets.FloatRangeSlider(
         value=[npkd.axis1.lowmass, npkd.axis1.highmass],
         min=npkd.axis1.lowmass,
         max=npkd.axis1.highmass,
         step=0.1,
         layout=Layout(width='100%'),
         description='zoom',
         continuous_update=False,
         readout=True,
         readout_format='.1f',
     )
     self.zoom.observe(self.display)
     self.tlabel = Label('threshold (x noise level):')
     self.thresh = widgets.FloatLogSlider(value=20.0,
                                          min=np.log10(3),
                                          max=2.0,
                                          base=10,
                                          step=0.01,
                                          layout=Layout(width='30%'),
                                          continuous_update=False,
                                          readout=True,
                                          readout_format='.1f')
     self.thresh.observe(self.pickpeak)
     self.peak_mode = widgets.Dropdown(options=['marker', 'bar'],
                                       value='marker',
                                       description='show as')
     self.peak_mode.observe(self.display)
     self.bexport = widgets.Button(
         description="Export",
         layout=Layout(width='7%'),
         button_style=
         'success',  # 'success', 'info', 'warning', 'danger' or ''
         tooltip='Export to csv file')
     self.bexport.on_click(self.pkexport)
     self.bprint = widgets.Button(description="Print",
                                  layout=Layout(width='7%'),
                                  button_style='success',
                                  tooltip='Print to screen')
     self.bprint.on_click(self.pkprint)
     self.bdone = widgets.Button(description="Done",
                                 layout=Layout(width='7%'),
                                 button_style='warning',
                                 tooltip='Fix results')
     self.bdone.on_click(self.done)
     #        self.spec = Output(layout={'border': '1px solid black'})
     self.out = Output(layout={'border': '1px solid red'})
     display(
         VBox([
             self.zoom,
             HBox([
                 self.tlabel, self.thresh, self.peak_mode, self.bprint,
                 self.bexport, self.bdone
             ])
         ]))
     self.fig, self.ax = plt.subplots()
     self.npkd.set_unit('m/z').peakpick(autothresh=self.thresh.value,
                                        verbose=False,
                                        zoom=self.zoom.value).centroid()
     self.display()
     display(self.out)
    def __init__(self, path_or_url, **kw):
        # data
        self.path = path_or_url
        x, y, w, labels = read2d(path_or_url, **kw)
        if 'labels' not in kw:
            kw['labels'] = labels

        self.x = x
        self.y = y
        self.w = w
        self.kw = kw

        x0 = x[0]
        y0 = y[:, 0]
        xmin, xmax, dx = x[0, 0], x[0, -1], x[0, 1] - x[0, 0]
        ymin, ymax, dy = y[0, 0], y[-1, 0], y[1, 0] - y[0, 0]
        wmin, wmax = np.min(w), np.max(w)
        dw = (wmax - wmin) / 20

        # UI
        self.s_xpos = widgets.FloatSlider(value=(xmin + xmax) / 2,
                                          min=xmin,
                                          max=xmax,
                                          step=dx,
                                          description='x')
        self.s_ypos = widgets.FloatSlider(value=(ymin + ymax) / 2,
                                          min=ymin,
                                          max=ymax,
                                          step=dy,
                                          description='y')
        vb1 = widgets.VBox([self.s_xpos, self.s_ypos])
        self.s_gamma = widgets.IntSlider(value=0,
                                         min=-100,
                                         max=100,
                                         step=10,
                                         description='gamma')
        self.s_vlim = widgets.FloatRangeSlider(value=[wmin, wmax],
                                               min=wmin,
                                               max=wmax,
                                               step=dw,
                                               description='limit')
        self.c_cmap = widgets.Combobox(value='',
                                       placeholder='Choose or type',
                                       options=plt.colormaps(),
                                       description='colormap:',
                                       ensure_option=False,
                                       disabled=False)
        vb2 = widgets.VBox([self.s_gamma, self.s_vlim, self.c_cmap])
        self.b_expMTX = widgets.Button(description='To mtx')
        self.html_exp = widgets.HTML()
        vb3 = widgets.VBox([self.b_expMTX, self.html_exp])
        ui = widgets.Tab(children=[vb1, vb2, vb3])
        [
            ui.set_title(i, j)
            for i, j in zip(range(3), ['linecuts', 'color', 'export'])
        ]
        display(ui)

        # figure
        fig, axs = plt.subplots(1, 2,
                                figsize=(6.5, 2.5))  #main plot and h linecut
        fig.canvas.header_visible = False
        fig.canvas.toolbar_visible = False
        fig.canvas.resizable = False

        plt.subplots_adjust(wspace=0.4, bottom=0.2)
        axs[1].yaxis.tick_right()
        axs[1].tick_params(axis='x', colors='tab:orange')
        axs[1].tick_params(axis='y', colors='tab:orange')
        axv = fig.add_axes(axs[1].get_position(),
                           frameon=False)  #ax vertical linecut
        axv.xaxis.tick_top()
        axv.tick_params(axis='x', colors='tab:blue')
        axv.tick_params(axis='y', colors='tab:blue')
        self.fig = fig
        self.ax = axs[0]
        self.axv = axv
        self.axh = axs[1]

        # plot 2D data
        g = self.s_gamma.value
        v0, v1 = self.s_vlim.value
        self.kw['gamma'], self.kw['vmin'], self.kw['vmax'] = g, v0, v1
        Painter.plot2d(self.x,
                       self.y,
                       self.w,
                       fig=self.fig,
                       ax=self.ax,
                       **self.kw)

        self.im = [
            obj for obj in self.ax.get_children()
            if isinstance(obj, mpl.image.AxesImage)
            or isinstance(obj, mpl.collections.QuadMesh)
        ][0]

        # vlinecut
        xpos = self.s_xpos.value
        indx = np.abs(x0 - xpos).argmin()  # x0 may be a non uniform array
        [self.linev1] = axs[0].plot(x[:, indx], y0, 'tab:blue')
        [self.linev2] = axv.plot(w[:, indx], y0, 'tab:blue')
        self.indx = indx

        # hlinecut
        ypos = self.s_ypos.value
        indy = np.abs(y0 - ypos).argmin()
        [self.lineh1] = axs[0].plot(x0, y[indy, :], 'tab:orange')
        [self.lineh2] = axs[1].plot(x0, w[indy, :], 'tab:orange')
        self.indy = indy

        self.s_gamma.observe(self.on_gamma_change, 'value')
        self.s_vlim.observe(self.on_vlim_change, 'value')
        self.c_cmap.observe(self.on_cmap_change, 'value')
        self.s_xpos.observe(self.on_xpos_change, 'value')
        self.s_ypos.observe(self.on_ypos_change, 'value')
        self.fig.canvas.mpl_connect('button_press_event', self.on_mouse_click)
        self.b_expMTX.on_click(self.exportMTX)
示例#24
0
    def __init__(self, drawable_mesh):
        self.drawable = drawable_mesh
        self.mesh = drawable_mesh.geometry
        self.mesh.attach(self)
        self.widgets = []
        self.click_picker = self.__initialize_picker()
        self.old_picked_face = None
        self.old_picked_face_internal = False
        self.__clipping_in_queue = False
        self.__dont_update_clipping = False

        self.invisible_layout = {'display': 'none'}
        self.visible_layout = {'display': ''}
        self.flip_button_layout = {
            'width': 'auto',
            'margin': '0px 0px 0px 10px'
        }
        self.slider_layout = {}
        self.flip_x_button = widgets.ToggleButton(
            value=False,
            description='Flip x',
            disabled=False,
            button_style='info',
            tooltip='Flip the visualization range on x axis',
            layout=self.flip_button_layout)

        self.flip_y_button = widgets.ToggleButton(
            value=False,
            description='Flip y',
            disabled=False,
            button_style='info',  # 'success', 'info', 'warning', 'danger' or ''
            tooltip='IFlip the visualization range on y axis',
            layout=self.flip_button_layout)

        self.flip_z_button = widgets.ToggleButton(
            value=False,
            description='Flip z',
            disabled=False,
            button_style='info',  # 'success', 'info', 'warning', 'danger' or ''
            tooltip='Flip the visualization range on z axis',
            layout=self.flip_button_layout)

        x_range = self.mesh.bbox[0][0], self.mesh.bbox[1][0]
        x_step = abs(x_range[0] - x_range[1]) / 100
        self.clipping_slider_x = widgets.FloatRangeSlider(
            value=x_range,
            min=x_range[0] - x_step,
            max=x_range[1] + x_step,
            step=x_step,
            description='X Clipping:',
            disabled=False,
            continuous_update=True,
            orientation='horizontal',
            readout=True,
            readout_format=".1f",
            layout=self.slider_layout)

        y_range = self.mesh.bbox[0][1], self.mesh.bbox[1][1]
        y_step = abs(y_range[0] - y_range[1]) / 100
        self.clipping_slider_y = widgets.FloatRangeSlider(
            value=y_range,
            min=y_range[0] - y_step,
            max=y_range[1] + y_step,
            step=y_step,
            description='Y Clipping:',
            disabled=False,
            continuous_update=True,
            orientation='horizontal',
            readout=True,
            readout_format=".1f",
            layout=self.slider_layout)

        z_range = self.mesh.bbox[0][2], self.mesh.bbox[1][2]
        z_step = abs(z_range[0] - z_range[1]) / 100
        self.clipping_slider_z = widgets.FloatRangeSlider(
            value=z_range,
            min=z_range[0] - z_step,
            max=z_range[1] + z_step,
            step=z_step,
            description='Z Clipping:',
            disabled=False,
            continuous_update=True,
            orientation='horizontal',
            readout=True,
            readout_format=".1f",
            layout=self.slider_layout)

        self.wireframe_opacity_slider = widgets.FloatSlider(
            value=0.4,
            min=0.,
            max=1.,
            step=0.1,
            continuous_update=True,
            readout_format=".1f",
            description='Wireframe',
            disable=False,
        )

        self.color_wireframe = widgets.ColorPicker(
            concise=True,
            value=self.drawable.wireframe.material.color,
            disabled=False,
            layout={'margin': '0 0 0 10px'})

        self.widgets += [
            widgets.HBox([self.clipping_slider_x, self.flip_x_button]),
            widgets.HBox([self.clipping_slider_y, self.flip_y_button]),
            widgets.HBox([self.clipping_slider_z, self.flip_z_button]),
            widgets.HBox([self.wireframe_opacity_slider,
                          self.color_wireframe]),
        ]

        self.picking_title = widgets.Label(value="Click informations:",
                                           layout={'margin': '0 0 0 20px'},
                                           disabled=False,
                                           continuous_update=True)

        self.picking_label = widgets.Label(layout={'margin': '0 0 0 20px'},
                                           disabled=False,
                                           continuous_update=True)

        tab_titles = ['Face', 'Vertex']
        children = [
            widgets.HTML(value="",
                         layout={'margin': '0 0 0 10px'},
                         disabled=False,
                         continuous_update=True) for title in tab_titles
        ]
        self.picking_tab = widgets.Tab(layout={'margin': '0 0 0 20px'},
                                       disabled=True,
                                       width=300,
                                       height=400)
        self.picking_tab.children = children
        for i in range(len(children)):
            self.picking_tab.set_title(i, tab_titles[i])
        self.color_picking_label = widgets.Label(
            value="Click Color  ",
            layout={'margin': '0 0 0 20px'},
            disabled=False,
            continuous_update=True)

        self.widgets += [
            widgets.HBox([self.picking_title]),
            widgets.HBox([self.picking_label]),
            widgets.HBox([self.picking_tab])
        ]

        self.color_map = widgets.Dropdown(
            options=[(i, idx)
                     for idx, i in enumerate(ColorMap.color_maps.keys())],
            value=0,
            description='Color-Map:',
            layout=self.invisible_layout,
        )
        self.widgets += [self.color_map]

        self.metric_menu = widgets.Dropdown(
            options=[(i, idx)
                     for idx, i in enumerate(self.mesh.simplex_metrics.keys())
                     ],
            value=0,
            description='Metric:',
            layout=self.invisible_layout,
        )
        self.widgets += [self.metric_menu]

        self.coloring_type_menu = widgets.Dropdown(
            options=[('Default', 0), ('Simplex Quality', 1), ('Label', 2)],
            value=0,
            description='Color Type:',
        )
        self.widgets += [self.coloring_type_menu]

        mesh_colors = []
        if hasattr(self.mesh, "internals"):
            self.color_internal = widgets.ColorPicker(
                concise=True,
                description='Internal',
                value=colors.rgb2hex(self.drawable._internal_color),
                disabled=False,
            )
            mesh_colors += [self.color_internal]

        self.color_picking = widgets.ColorPicker(
            concise=True,
            description="Click Color",
            value=colors.rgb2hex(colors.purple),
            disabled=False,
        )
        self.color_external = widgets.ColorPicker(
            concise=True,
            description='External',
            value=colors.rgb2hex(self.drawable._external_color),
            disabled=False,
        )
        mesh_colors += [self.color_external]
        mesh_colors += [self.color_picking]

        self.widgets += [widgets.HBox(mesh_colors)]

        self.color_label_pickers = [
            widgets.ColorPicker(
                concise=True,
                description='Label ' + str(i),
                value=colors.random_color(return_hex=True),
                disabled=False,
                layout=self.visible_layout,
            ) for i in np.unique(self.mesh.labels)
        ]

        self.color_label_pickers = widgets.HBox(self.color_label_pickers,
                                                layout=self.invisible_layout)
        self.widgets += [self.color_label_pickers]

        self.flip_x_button.observe(self.__update_clipping, names='value')
        self.flip_y_button.observe(self.__update_clipping, names='value')
        self.flip_z_button.observe(self.__update_clipping, names='value')
        self.clipping_slider_x.observe(self.__update_clipping, names='value')
        self.clipping_slider_y.observe(self.__update_clipping, names='value')
        self.clipping_slider_z.observe(self.__update_clipping, names='value')
        if hasattr(self.mesh, "internals"):
            self.color_internal.observe(self.__update_internal_color,
                                        names='value')
        self.color_external.observe(self.__update_external_color,
                                    names='value')
        self.color_wireframe.observe(self.__update_wireframe_color,
                                     names='value')
        self.wireframe_opacity_slider.observe(self.__update_wireframe_opacity,
                                              names='value')
        self.coloring_type_menu.observe(self.__change_color_type,
                                        names='value')
        self.color_map.observe(self.__change_color_map, names='value')
        self.metric_menu.observe(self.__change_metric, names='value')

        self.click_picker.observe(self.on_click, names=['point'])

        [
            i.observe(self.__change_color_label, names='value')
            for i in self.color_label_pickers.children
        ]
        #self.wireframe_thickness_slider.observe(self.__update_wireframe_thickness, names='value')

        for widget in self.widgets:
            ipydisplay(widget)
示例#25
0
    sl_alg_manag
],
                         layout={'align_items': 'stretch'})

sl_rep = widgets.IntSlider(value=1, min=1, max=10, step=1, disabled=True)

rep = widgets.VBox(
    [widgets.Label('Simulation runs:', layout={'width': '95%'}), sl_rep],
    layout={'align_items': 'stretch'})

bt_start_simple = widgets.Button(description='Start', disabled=True)
# Optimizer components

sl_eta_range = widgets.FloatRangeSlider(value=[0.5, 0.7],
                                        min=0,
                                        max=1.0,
                                        step=0.01,
                                        disabled=True)

eta_range = widgets.VBox([
    widgets.Label('Frequency threshold (eta):', layout={'width': '95%'}),
    sl_eta_range
],
                         layout={'align_items': 'stretch'})

sl_epsilon_range = widgets.FloatRangeSlider(value=[0.5, 0.7],
                                            min=0,
                                            max=1.0,
                                            step=0.01,
                                            disabled=True)
示例#26
0
def wi9(muscle_emg):
    style = {'description_width': 'initial'}
    wi110 = wi.Checkbox(value=True,
                        description='Plot moving RMS',
                        layout=wi.Layout(width='400px'),
                        continuous_update=False,
                        style=style)
    wi111 = wi.IntSlider(value=100,
                         min=1,
                         max=500,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         continuous_update=False,
                         description='Moving RMS window length [ms]:')
    wi112 = wi.Checkbox(value=True,
                        description='Plot Spectrogram',
                        continuous_update=False,
                        style=style,
                        layout=wi.Layout(width='400px'))
    wi113 = wi.Dropdown(options=['boxcar', 'hamming', 'hann'],
                        value='hann',
                        style=style,
                        layout=wi.Layout(width='400px'),
                        continuous_update=False,
                        description='Window type:')
    wi114 = wi.IntSlider(value=120,
                         min=2,
                         max=3000,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         continuous_update=False,
                         description='Window length [ms]:')
    wi115 = wi.IntSlider(value=60,
                         min=1,
                         max=1500,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         continuous_update=False,
                         description='Window overlap [ms]:')
    wi116 = wi.Checkbox(value=False,
                        continuous_update=False,
                        description='Plot Welch \' s periodogram',
                        layout=wi.Layout(width='400px'),
                        style=style)
    wi117 = wi.Dropdown(options=['boxcar', 'hamming', 'hann'],
                        value='hann',
                        continuous_update=False,
                        style=style,
                        description='Window type:',
                        layout=wi.Layout(width='400px'))
    wi118 = wi.IntSlider(value=120,
                         min=2,
                         max=3000,
                         style=style,
                         layout=wi.Layout(width='400px'),
                         continuous_update=False,
                         description='Window length [ms]:')
    wi119 = wi.IntSlider(value=60,
                         min=1,
                         max=1500,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         continuous_update=False,
                         description='Window overlap [ms]:')
    end = muscle_emg.t[-1]
    wi1110 = wi.FloatRangeSlider(value=[0, end],
                                 min=0,
                                 max=end,
                                 step=50,
                                 style=style,
                                 layout=wi.Layout(width='500px'),
                                 continuous_update=False,
                                 description='Analysis interval [ms]')
    wi1111 = wi.Checkbox(value=False,
                         style=style,
                         description='Plot MU contribution',
                         layout=wi.Layout(width='400px'),
                         continuous_update=False)
    wi1112 = wi.BoundedIntText(value=1,
                               min=1,
                               max=muscle_emg.LR,
                               step=1,
                               description='MU index #:',
                               continuous_update=False,
                               style=style,
                               layout=wi.Layout(width='400px'))
    ws11 = {
        'add_rms': wi110,
        'rms_length': wi111,
        'add_spec': wi112,
        'spec_w': wi113,
        'spec_w_size': wi114,
        'spec_ol': wi115,
        'add_welch': wi116,
        'welch_w': wi117,
        'welch_w_size': wi118,
        'welch_ol': wi119,
        'a_interval': wi1110,
        'add_mu_cont': wi1111,
        'mu_c_index': wi1112
    }
    mu_cont_acc = wi.VBox([wi1111, wi1112])
    moving_average_acc = wi.VBox([wi110, wi111])
    spectrogram_acc = wi.VBox([wi112, wi113, wi114, wi115])
    welch_acc = wi.VBox([wi116, wi117, wi118, wi119])
    acc11 = wi.Tab(
        children=[moving_average_acc, spectrogram_acc, welch_acc, mu_cont_acc])
    acc11.set_title(0, 'Moving RMS')
    acc11.set_title(1, 'Spectrogram')
    acc11.set_title(2, 'Welch\'s periodogram')
    acc11.set_title(3, 'MUAP train')
    ui9 = wi.VBox([wi1110, acc11])
    l11 = wi.link((ui9.children[1].children[1].children[2], 'value'),
                  (ui9.children[1].children[1].children[3], 'max'))
    l12 = wi.link((ui9.children[1].children[1].children[3], 'value'),
                  (ui9.children[1].children[1].children[2], 'min'))
    l21 = wi.link((ui9.children[1].children[2].children[2], 'value'),
                  (ui9.children[1].children[2].children[3], 'max'))
    l22 = wi.link((ui9.children[1].children[2].children[3], 'value'),
                  (ui9.children[1].children[2].children[2], 'min'))
    return ui9, ws11
示例#27
0
    def __init__(self):

        # define + and - buttons
        self.w_add_left = widgets.Button(icon="plus-square",
                                         layout=widgets.Layout(width='30px'))
        self.w_add_right = widgets.Button(icon="plus-square",
                                          layout=widgets.Layout(width='30px'))
        self.w_del_left = widgets.Button(icon="minus-square",
                                         layout=widgets.Layout(width='30px'))
        self.w_del_right = widgets.Button(icon="minus-square",
                                          layout=widgets.Layout(width='30px'))
        # define callbacks for + and - buttons
        self.w_add_left.on_click(self.add_section_to_the_left)
        self.w_add_right.on_click(self.add_section_to_the_right)
        self.w_del_left.on_click(self.del_section_to_the_left)
        self.w_del_right.on_click(self.del_section_to_the_right)

        self.output = widgets.Output()

        self.w_plot = widgets.Button(description='plot')
        self.w_plot.on_click(self.update_plot)

        self.f_vi = 55  # MHz
        # frequency for voltage and current plot
        self.f_vi_w = widgets.BoundedFloatText(
            value=self.f_vi,
            min=45,
            max=65,
            step=0.1,
            description='V/I plot frequency [MHz]',
            layout=widgets.Layout(width='150px'))
        self.f_vi_w.observe(self.update_f_vi)

        # frequency band for S11 plot
        self.frequency_band_w = widgets.FloatRangeSlider(
            value=[self.f_vi - 1, self.f_vi + 1],
            min=45,
            max=65,
            step=0.1,
            readout=True,
            readout_format=".1f",
        )
        self.frequency_band_w.observe(self.update_frequency_band)

        # Input Power
        self.w_Pin = widgets.BoundedFloatText(
            value=50,
            min=1,
            max=200,
            description='Input Power [kW]',
            layout=widgets.Layout(width='150px'))
        self.w_Pin.observe(self.update_Pin)

        # Configuration Manager
        self.w_load = widgets.Button(description='Load Configuration')
        self.w_load.on_click(self.load_config)

        self.w_save = widgets.Button(description='Save Configuration')
        self.w_save.on_click(self.save_config)
        self.w_config_text = widgets.Textarea()

        self.w_config = widgets.Dropdown(options=[
            'Simple - 55 MHz', 'SSA50 - 62 MHz', 'SSA84 - FW Vmax',
            'SSA84 - FW Imax'
        ],
                                         value='Simple - 55 MHz')
        self.w_config.observe(self.update_config)
        self.set_config()

        self.fig, self.axes = plt.subplots(figsize=(10, 6))

        self.__update_display()

        super().__init__(children=self.UI)
示例#28
0
def wi12(muscle_force):
    style = {'description_width': 'initial'}
    wi120 = wi.Checkbox(value=True,
                        style=style,
                        description='Plot standard deviation',
                        layout=wi.Layout(width='400px'))
    wi122 = wi.Checkbox(value=True,
                        style=style,
                        description='Plot spectrogram',
                        layout=wi.Layout(width='400px'))
    wi123 = wi.Dropdown(options=['boxcar', 'hamming', 'hann'],
                        value='hann',
                        layout=wi.Layout(width='400px'),
                        style=style,
                        description='Window type:')
    wi124 = wi.IntSlider(value=2000,
                         min=2,
                         max=5000,
                         step=5,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         description='Window length [ms]:')
    wi125 = wi.IntSlider(value=60,
                         min=1,
                         max=2500,
                         step=5,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         description='Window overlap [ms]:')
    wi126 = wi.Checkbox(value=False,
                        style=style,
                        description='Plot Welch \' s periodogram',
                        layout=wi.Layout(width='400px'))
    wi127 = wi.Dropdown(options=['boxcar', 'hamming', 'hann'],
                        value='hann',
                        layout=wi.Layout(width='400px'),
                        style=style,
                        description='Window type:')
    wi128 = wi.IntSlider(value=2000,
                         min=2,
                         max=5000,
                         step=5,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         description='Window length [ms]:')
    wi129 = wi.IntSlider(value=60,
                         min=0,
                         max=2500,
                         step=5,
                         layout=wi.Layout(width='400px'),
                         style=style,
                         description='Window overlap [ms]:')
    wi1210 = wi.FloatRangeSlider(value=[0, muscle_force.t[-1]],
                                 min=0,
                                 max=muscle_force.t[-1],
                                 step=50,
                                 layout=wi.Layout(width='600px'),
                                 style=style,
                                 description='Analysis interval [ms]')
    wi1211 = wi.Checkbox(value=False,
                         description='Plot MU force',
                         layout=wi.Layout(width='400px'),
                         style=style)
    wi1212 = wi.BoundedIntText(value=1,
                               min=1,
                               max=muscle_force.LR,
                               step=1,
                               style=style,
                               description='Motor unit index #:',
                               layout=wi.Layout(width='400px'))
    ws = {
        'add_rms': wi120,
        'add_spec': wi122,
        'spec_w': wi123,
        'spec_w_size': wi124,
        'spec_ol': wi125,
        'add_welch': wi126,
        'welch_w': wi127,
        'welch_w_size': wi128,
        'welch_ol': wi129,
        'a_interval': wi1210,
        'add_mu_c': wi1211,
        'mu_index': wi1212
    }
    moving_average_acc2 = wi.VBox([wi120])
    spectrogram_acc2 = wi.VBox([wi122, wi123, wi124, wi125])
    welch_acc2 = wi.VBox([wi126, wi127, wi128, wi129])
    mu_c2 = wi.VBox([wi1211, wi1212])
    acc12 = wi.Tab(
        children=[moving_average_acc2, spectrogram_acc2, welch_acc2, mu_c2])
    acc12.set_title(0, 'Standard deviation')
    acc12.set_title(1, 'Spectrogram')
    acc12.set_title(2, 'Welch\'s periodogram')
    acc12.set_title(3, 'Motor unit force')
    ui12 = wi.VBox([wi1210, acc12])
    l211 = wi.link((ui12.children[1].children[1].children[2], 'value'),
                   (ui12.children[1].children[1].children[3], 'max'))
    l212 = wi.link((ui12.children[1].children[1].children[3], 'value'),
                   (ui12.children[1].children[1].children[2], 'min'))
    l221 = wi.link((ui12.children[1].children[2].children[2], 'value'),
                   (ui12.children[1].children[2].children[3], 'max'))
    l222 = wi.link((ui12.children[1].children[2].children[3], 'value'),
                   (ui12.children[1].children[2].children[2], 'min'))
    return ui12, ws
示例#29
0
def fitBySliders(geometryParams, xanes, exp):
    # normalize params
    geometryParamsMin = np.min(geometryParams.values, axis=0)
    geometryParamsMax = np.max(geometryParams.values, axis=0)
    geometryParams = 2 * (geometryParams - geometryParamsMin) / (
        geometryParamsMax - geometryParamsMin) - 1
    # machine learning estimator training
    estimator = makeQuadric(RidgeCV(alphas=[0.01, 0.1, 1, 10, 100]))
    estimator.fit(geometryParams.values, xanes.values)
    # need for smoothing by fdmnes
    xanesFolder = tempfile.mkdtemp(prefix='smooth_')
    e_names = xanes.columns
    xanes_energy = np.array(
        [float(e_names[i][2:]) for i in range(e_names.size)])
    fig, ax = plt.subplots()
    ax2 = ax.twinx()
    fig.set_size_inches((16 * 0.6, 9 * 0.8))

    def plotXanes(**params):
        geomArg = np.array([params[pName] for pName in geometryParams.columns
                            ]).reshape([1, geometryParams.shape[1]])
        geomArg = 2 * (geomArg - geometryParamsMin) / (geometryParamsMax -
                                                       geometryParamsMin) - 1
        # prediction
        absorbPrediction = estimator.predict(geomArg)[0]
        # smoothing
        xanesPrediction = utils.Xanes(xanes_energy, absorbPrediction, None,
                                      None)
        xanesPrediction.save(xanesFolder + '/out.txt',
                             exp.defaultSmoothParams.fdmnesSmoothHeader)
        _, smoothedXanes = smoothLib.smooth_fdmnes(
            None, None, params['Gamma_hole'], params['Ecent'], params['Elarg'],
            params['Gamma_max'], params['Efermi'], xanesFolder)
        #plotting
        shift = params['shift']
        exp_e = exp.xanes.energy
        exp_xanes = exp.xanes.absorb
        e_fdmnes = exp_e - shift
        absorbPredictionNormalized = utils.fit_arg_to_experiment(
            xanesPrediction.energy,
            exp_e,
            xanesPrediction.absorb,
            shift,
            lastValueNorm=True)
        smoothedPredictionNormalized = utils.fit_arg_to_experiment(
            xanesPrediction.energy,
            exp_e,
            smoothedXanes,
            shift,
            lastValueNorm=True)
        if params['notConvoluted']:
            ax.plot(e_fdmnes, absorbPredictionNormalized, label='initial')
        ax.clear()
        ax.plot(e_fdmnes, smoothedPredictionNormalized, label='convolution')
        ax.plot(e_fdmnes, exp_xanes, c='k', label="Experiment")
        if params['smoothWidth']:
            smoothWidth = smoothLib.YvesWidth(e_fdmnes, params['Gamma_hole'],
                                              params['Ecent'], params['Elarg'],
                                              params['Gamma_max'],
                                              params['Efermi'])
            ax2.clear()
            ax2.plot(e_fdmnes, smoothWidth, c='r', label='Smooth width')
            ax2.legend()
        ax.set_xlim([params['energyRange'][0], params['energyRange'][1]])
        ax.set_ylim([0, np.max(exp_xanes) * 1.2])
        ax.set_xlabel("Energy")
        ax.set_ylabel("Absorb")
        ax.legend()
        # plt.show()

    controls = []
    o = 'vertical'
    for pName in exp.geometryParamRanges:
        p0 = exp.geometryParamRanges[pName][0]
        p1 = exp.geometryParamRanges[pName][1]
        controls.append(
            widgets.FloatSlider(description=pName,
                                min=p0,
                                max=p1,
                                step=(p1 - p0) / 30,
                                value=(p0 + p1) / 2,
                                orientation=o))
    shift = optimize.value(exp.defaultSmoothParams['fdmnes'], 'shift')
    controls.append(
        widgets.FloatSlider(description='shift',
                            min=shift - 10.0,
                            max=shift + 10.0,
                            step=0.3,
                            value=shift,
                            orientation=o))
    controls.append(
        widgets.FloatSlider(description='Gamma_hole',
                            min=0.1,
                            max=10,
                            step=0.2,
                            value=2,
                            orientation=o))
    controls.append(
        widgets.FloatSlider(description='Ecent',
                            min=0,
                            max=100,
                            step=1,
                            value=50,
                            orientation=o))
    controls.append(
        widgets.FloatSlider(description='Elarg',
                            min=0,
                            max=100,
                            step=1,
                            value=50,
                            orientation=o))
    controls.append(
        widgets.FloatSlider(description='Gamma_max',
                            min=1,
                            max=100,
                            step=1,
                            value=15,
                            orientation=o))
    controls.append(
        widgets.FloatSlider(description='Efermi',
                            min=-30,
                            max=30,
                            step=1,
                            value=0,
                            orientation=o))
    controls.append(widgets.Checkbox(description='smoothWidth', value=True))
    controls.append(widgets.Checkbox(description='notConvoluted', value=True))
    e0 = xanes_energy[0]
    e1 = xanes_energy[-1]
    controls.append(
        widgets.FloatRangeSlider(description='energyRange',
                                 min=e0,
                                 max=e1,
                                 step=(e1 - e0) / 30,
                                 value=[e0, e1],
                                 orientation='horizontal'))
    ui = widgets.HBox(tuple(controls))
    ui.layout.flex_flow = 'row wrap'
    ui.layout.justify_content = 'space-between'
    ui.layout.align_items = 'flex-start'
    ui.layout.align_content = 'flex-start'
    controlsDict = {}
    for c in controls:
        controlsDict[c.description] = c
    out = widgets.interactive_output(plotXanes, controlsDict)
    # out.layout.min_height = '400px'
    display(ui, out)
示例#30
0
def options(X):

    style = {'description_width': 'initial'}  #general style settings

    #horizontal line widget
    HL = widgets.HTML(
        value=
        '<hr style="height:3px;border:none;color:#333;background-color:#333;" />'
    )

    M_title = widgets.HTML(value='<h3>Select data type:</h3>')
    M_widge = widgets.RadioButtons(
        options=['Magnetisations', 'Lower branch subtracted'],
        value='Lower branch subtracted',
        style=style)

    ### Horizontal smoothing ###
    S_title = widgets.HTML(value='<h3>Set smoothing parameters:</h3>')

    #SC widgets
    Sc_widge = widgets.IntRangeSlider(value=[2, 8],
                                      min=2,
                                      max=10,
                                      step=1,
                                      description='Select $s_c$ range:',
                                      continuous_update=False,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.0f',
                                      style=style)

    Sb_widge = widgets.IntRangeSlider(value=[2, 8],
                                      min=2,
                                      max=10,
                                      step=1,
                                      description='Select $s_u$ range:',
                                      continuous_update=False,
                                      orientation='horizontal',
                                      readout=True,
                                      readout_format='.0f',
                                      style=style)

    lambda_widge = widgets.FloatRangeSlider(
        value=[0.0, 0.08],
        min=0,
        max=0.2,
        step=0.04,
        description='Select $\lambda$ range:',
        disabled=False,
        continuous_update=False,
        orientation='horizontal',
        readout=True,
        readout_format='.2f',
        style=style)

    down_title = widgets.HTML(value='<h3>Specify downsampling:</h3>')
    down_widge = widgets.IntSlider(value=np.minimum(X['M'].size, 2000),
                                   min=100,
                                   max=X['M'].size,
                                   step=1,
                                   description='Number of points:',
                                   disabled=False,
                                   continuous_update=False,
                                   orientation='horizontal',
                                   readout=True,
                                   readout_format='d',
                                   style=style)

    #display number of models to compare
    model_widge = widgets.interactive_output(variforc_array_size, {
        'SC': Sc_widge,
        'SB': Sb_widge,
        'L': lambda_widge
    })

    #combined widget
    DS = VBox([down_title, down_widge])
    SC = VBox([
        M_title, M_widge, HL, S_title, Sc_widge, Sb_widge, lambda_widge,
        model_widge
    ])

    ### Setup Multiprocessing tab ####################
    X['ncore'] = 4

    #header
    dask_title = widgets.HTML(value='<h3>DASK multiprocessing:</h3>')

    #selection widget
    dask_widge = widgets.IntSlider(value=X['ncore'],
                                   min=1,
                                   max=X['ncore'],
                                   step=1,
                                   description='Number of DASK workers:',
                                   disabled=False,
                                   continuous_update=False,
                                   orientation='horizontal',
                                   readout=True,
                                   readout_format='d',
                                   style=style)

    #final multiprocessing widget
    mpl_widge = VBox([dask_title, dask_widge])

    ### CONSTRUCT TAB MENU #############
    method_nest = widgets.Tab()
    method_nest.children = [SC, DS, mpl_widge]
    method_nest.set_title(0, 'MODEL ENSEMBLE')
    method_nest.set_title(1, 'DOWNSAMPLING')
    method_nest.set_title(2, 'PROCESSING')

    display(method_nest)

    ### SETUP OUTPUT ####
    X['Mtype'] = M_widge
    X['SC'] = Sc_widge
    X['SB'] = Sb_widge
    X['lambda'] = lambda_widge
    X['Ndown'] = down_widge
    X['workers'] = dask_widge

    return X