def _init():
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    base_path = ir_datasets.util.home_path()/NAME
    dlc = DownloadConfig.context(NAME, base_path)
    subsets = {}

    docs_dlc = dlc['docs']
    docs_chk_dlc = TarExtractAll(dlc['docs.chk'], base_path/'corpus.chk')
    b13_dlc = Bz2Extract(Cache(TarExtract(dlc['cw12b-info'], 'ClueWeb12-CreateB13/software/CreateClueWeb12B13Dataset.jar'), base_path/'CreateClueWeb12B13Dataset.jar'))

    collection = ClueWeb12Docs(docs_dlc, docs_chk_dlc)
    collection_b13 = ClueWeb12Docs(ClueWeb12b13Extractor(docs_dlc, b13_dlc))

    base = Dataset(collection, documentation('_'))

    subsets['b13'] = Dataset(collection_b13, documentation('b13'))

    subsets['trec-web-2013'] = Dataset(
        collection,
        TrecXmlQueries(dlc['trec-web-2013/queries'], qtype=TrecWebTrackQuery, namespace=NAME),
        TrecQrels(dlc['trec-web-2013/qrels.adhoc'], QREL_DEFS),
        documentation('trec-web-2013'))

    subsets['trec-web-2014'] = Dataset(
        collection,
        TrecXmlQueries(dlc['trec-web-2014/queries'], qtype=TrecWebTrackQuery, namespace=NAME),
        TrecQrels(dlc['trec-web-2014/qrels.adhoc'], QREL_DEFS),
        documentation('trec-web-2014'))

    subsets['b13/ntcir-www-1'] = Dataset(
        collection_b13,
        TrecXmlQueries(Cache(ZipExtract(dlc['ntcir-www-1/queries'], 'eng.queries.xml'), base_path/'ntcir-www-1'/'queries.xml'), qtype=GenericQuery, qtype_map={'qid': 'query_id', 'content': 'text'}, namespace=NAME),
        NtcirQrels(dlc['ntcir-www-1/qrels'], NTCIR_QREL_DEFS),
        documentation('ntcir-www-1'))

    subsets['b13/ntcir-www-2'] = Dataset(
        collection_b13,
        TrecXmlQueries(Cache(ZipExtract(dlc['ntcir-www-2/queries'], 'qEng.xml'), base_path/'ntcir-www-2'/'queries.xml'), qtype=NtcirQuery, qtype_map=ntcir_map, namespace=NAME),
        NtcirQrels(dlc['ntcir-www-2/qrels'], NTCIR_QREL_DEFS),
        documentation('ntcir-www-2'))

    subsets['b13/ntcir-www-3'] = Dataset(
        collection_b13,
        TrecXmlQueries(dlc['ntcir-www-3/queries'], qtype=NtcirQuery, qtype_map=ntcir_map, namespace=NAME),
        documentation('ntcir-www-3'))

    subsets['b13/trec-misinfo-2019'] = Dataset(
        collection_b13,
        TrecXmlQueries(dlc['trec-misinfo-2019/queries'], qtype=MisinfoQuery, qtype_map=misinfo_map, namespace=NAME),
        MsinfoQrels(dlc['trec-misinfo-2019/qrels'], MISINFO_QREL_DEFS),
        documentation('trec-misinfo-2019'))

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets
示例#2
0
def _init():
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path)
    subsets = {}

    main_dlc = dlc['main']
    base = Dataset(
        VaswaniDocs(
            Cache(TarExtract(main_dlc, 'doc-text'), base_path / 'docs.txt')),
        VaswaniQueries(
            Cache(TarExtract(main_dlc, 'query-text'),
                  base_path / 'queries.txt')),
        VaswaniQrels(
            Cache(TarExtract(main_dlc, 'rlv-ass'), base_path / 'qrels.txt')),
        documentation('_'),
    )

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets
示例#3
0
def _init():
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path)
    subsets = {}

    main_dlc = dlc['main']
    base = Dataset(
        CranfieldDocs(
            Cache(TarExtract(main_dlc, 'cran.all.1400'),
                  base_path / 'docs.txt')),
        CranfieldQueries(
            Cache(TarExtract(main_dlc, 'cran.qry'),
                  base_path / 'queries.txt')),
        CranfieldQrels(
            Cache(TarExtract(main_dlc, 'cranqrel'), base_path / 'qrels.txt')),
        documentation('_'),
    )

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets
示例#4
0
def _init():
    subsets = {}
    base_path = ir_datasets.util.home_path()/NAME
    dlc = DownloadConfig.context(NAME, base_path)
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')

    docs_v15 = CarDocs(TarExtract(dlc['docs'], 'paragraphcorpus/paragraphcorpus.cbor', compression='xz'))
    base = Dataset(documentation('_'))

    subsets['v1.5'] = Dataset(docs_v15, documentation('v1.5'))

    subsets['v1.5/trec-y1'] = Dataset(
        docs_v15,
        CarQueries(TarExtract(dlc['trec-y1/queries'], 'benchmarkY1test.public/test.benchmarkY1test.cbor.outlines', compression='xz')),)
    subsets['v1.5/trec-y1/manual'] = Dataset(
        subsets['v1.5/trec-y1'],
        TrecQrels(TarExtract(dlc['trec-y1/qrels'], 'TREC_CAR_2017_qrels/manual.benchmarkY1test.cbor.hierarchical.qrels'), MANUAL_QRELS))
    subsets['v1.5/trec-y1/auto'] = Dataset(
        subsets['v1.5/trec-y1'],
        TrecQrels(TarExtract(dlc['trec-y1/qrels'], 'TREC_CAR_2017_qrels/automatic.benchmarkY1test.cbor.hierarchical.qrels'), AUTO_QRELS))

    subsets['v1.5/test200'] = Dataset(
        docs_v15,
        CarQueries(TarExtract(dlc['test200'], 'test200/train.test200.cbor.outlines', compression='xz')),
        TrecQrels(TarExtract(dlc['test200'], 'test200/train.test200.cbor.hierarchical.qrels', compression='xz'), AUTO_QRELS))

    train_data = ReTar(dlc['train'], base_path/'train.smaller.tar.xz', ['train/train.fold?.cbor.outlines', 'train/train.fold?.cbor.hierarchical.qrels'], compression='xz')
    subsets['v1.5/train/fold0'] = Dataset(
        docs_v15,
        CarQueries(TarExtract(train_data, 'train/train.fold0.cbor.outlines', compression='xz')),
        TrecQrels(TarExtract(train_data, 'train/train.fold0.cbor.hierarchical.qrels', compression='xz'), AUTO_QRELS))

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', Dataset(subsets[s], documentation(s)))

    return base, subsets
示例#5
0
def _init():
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path, dua=DUA)
    migrator = Migrator(base_path / 'irds_version.txt',
                        'v2',
                        affected_files=[
                            base_path / 'collection.tsv',
                            base_path / 'collection.tsv.pklz4'
                        ],
                        message=f'Migrating {NAME} (fixing passage encoding)')

    collection = TsvDocs(Cache(
        FixEncoding(TarExtract(dlc['collectionandqueries'], 'collection.tsv')),
        base_path / 'collection.tsv'),
                         namespace='msmarco',
                         lang='en',
                         docstore_size_hint=14373971970,
                         count_hint=ir_datasets.util.count_hint(NAME))
    collection = migrator(collection)
    subsets = {}

    subsets['train'] = Dataset(
        collection,
        TsvQueries(Cache(TarExtract(dlc['queries'], 'queries.train.tsv'),
                         base_path / 'train/queries.tsv'),
                   namespace='msmarco',
                   lang='en'),
        TrecQrels(dlc['train/qrels'], QRELS_DEFS),
        TsvDocPairs(GzipExtract(dlc['train/docpairs'])),
        TrecScoredDocs(
            Cache(
                ExtractQidPid(
                    TarExtract(dlc['train/scoreddocs'], 'top1000.train.txt')),
                base_path / 'train/ms.run')),
    )

    subsets['train/triples-v2'] = Dataset(
        collection,
        subsets['train'].queries_handler(),
        subsets['train'].qrels_handler(),
        TsvDocPairs(GzipExtract(dlc['train/docpairs/v2'])),
        subsets['train'].scoreddocs_handler(),
    )

    subsets['train/triples-small'] = Dataset(
        collection,
        subsets['train'].queries_handler(),
        subsets['train'].qrels_handler(),
        TsvDocPairs(
            Cache(
                MapSmallTriplesQidPid(
                    TarExtract(dlc['train/docpairs/small'],
                               'triples.train.small.tsv'),
                    TarExtract(dlc['collectionandqueries'], 'collection.tsv'),
                    subsets['train'].queries_handler()),
                base_path / 'train/small.triples.qidpid.tsv')),
        subsets['train'].scoreddocs_handler(),
    )

    subsets['dev'] = Dataset(
        collection,
        TsvQueries(Cache(TarExtract(dlc['queries'], 'queries.dev.tsv'),
                         base_path / 'dev/queries.tsv'),
                   namespace='msmarco',
                   lang='en'),
        TrecQrels(dlc['dev/qrels'], QRELS_DEFS),
    )

    subsets['dev/small'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(dlc['collectionandqueries'], 'queries.dev.small.tsv'),
            base_path / 'dev/small/queries.tsv'),
                   namespace='msmarco',
                   lang='en'),
        TrecQrels(
            Cache(
                TarExtract(dlc['collectionandqueries'], 'qrels.dev.small.tsv'),
                base_path / 'dev/small/qrels'), QRELS_DEFS),
        TrecScoredDocs(
            Cache(
                ExtractQidPid(TarExtract(dlc['dev/scoreddocs'],
                                         'top1000.dev')),
                base_path / 'dev/ms.run')),
    )

    subsets['eval'] = Dataset(
        collection,
        TsvQueries(Cache(TarExtract(dlc['queries'], 'queries.eval.tsv'),
                         base_path / 'eval/queries.tsv'),
                   namespace='msmarco',
                   lang='en'),
    )

    subsets['eval/small'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(dlc['collectionandqueries'], 'queries.eval.small.tsv'),
            base_path / 'eval/small/queries.tsv'),
                   namespace='msmarco',
                   lang='en'),
        TrecScoredDocs(
            Cache(
                ExtractQidPid(
                    TarExtract(dlc['eval/scoreddocs'], 'top1000.eval')),
                base_path / 'eval/ms.run')),
    )

    subsets['trec-dl-2019'] = Dataset(
        collection,
        TrecQrels(dlc['trec-dl-2019/qrels'], TREC_DL_QRELS_DEFS),
        TsvQueries(Cache(GzipExtract(dlc['trec-dl-2019/queries']),
                         base_path / 'trec-dl-2019/queries.tsv'),
                   namespace='msmarco',
                   lang='en'),
        TrecScoredDocs(
            Cache(ExtractQidPid(GzipExtract(dlc['trec-dl-2019/scoreddocs'])),
                  base_path / 'trec-dl-2019/ms.run')),
    )

    subsets['trec-dl-2020'] = Dataset(
        collection,
        TsvQueries(GzipExtract(dlc['trec-dl-2020/queries']),
                   namespace='msmarco',
                   lang='en'),
        TrecQrels(dlc['trec-dl-2020/qrels'], TREC_DL_QRELS_DEFS),
        TrecScoredDocs(
            Cache(ExtractQidPid(GzipExtract(dlc['trec-dl-2020/scoreddocs'])),
                  base_path / 'trec-dl-2020/ms.run')),
    )

    # A few subsets that are contrainted to just the queries/qrels/docpairs that have at least
    # 1 relevance assessment
    train_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['train'].qrels_iter()})
    subsets['train/judged'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(), train_judged),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(),
                           train_judged),
        subsets['train'],
    )

    dev_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['dev'].qrels_iter()})
    subsets['dev/judged'] = Dataset(
        FilteredQueries(subsets['dev'].queries_handler(), dev_judged),
        subsets['dev'],
    )

    dl19_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['trec-dl-2019'].qrels_iter()})
    subsets['trec-dl-2019/judged'] = Dataset(
        FilteredQueries(subsets['trec-dl-2019'].queries_handler(),
                        dl19_judged),
        FilteredScoredDocs(subsets['trec-dl-2019'].scoreddocs_handler(),
                           dl19_judged),
        subsets['trec-dl-2019'],
    )

    dl20_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['trec-dl-2020'].qrels_iter()})
    subsets['trec-dl-2020/judged'] = Dataset(
        FilteredQueries(subsets['trec-dl-2020'].queries_handler(),
                        dl20_judged),
        FilteredScoredDocs(subsets['trec-dl-2020'].scoreddocs_handler(),
                           dl20_judged),
        subsets['trec-dl-2020'],
    )

    # split200 -- 200 queries held out from the training data for validation
    split200 = Lazy(lambda: SPLIT200_QIDS)
    subsets['train/split200-train'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(),
                        split200,
                        mode='exclude'),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(),
                           split200,
                           mode='exclude'),
        FilteredQrels(subsets['train'].qrels_handler(),
                      split200,
                      mode='exclude'),
        FilteredDocPairs(subsets['train'].docpairs_handler(),
                         split200,
                         mode='exclude'),
        subsets['train'],
    )
    subsets['train/split200-valid'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(),
                        split200,
                        mode='include'),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(),
                           split200,
                           mode='include'),
        FilteredQrels(subsets['train'].qrels_handler(),
                      split200,
                      mode='include'),
        FilteredDocPairs(subsets['train'].docpairs_handler(),
                         split200,
                         mode='include'),
        subsets['train'],
    )

    # Medical subset
    def train_med():
        with dlc['medmarco_ids'].stream() as stream:
            stream = codecs.getreader('utf8')(stream)
            return {l.rstrip() for l in stream}

    train_med = Lazy(train_med)
    subsets['train/medical'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(), train_med),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(), train_med),
        FilteredDocPairs(subsets['train'].docpairs_handler(), train_med),
        FilteredQrels(subsets['train'].qrels_handler(), train_med),
        subsets['train'],
    )

    # DL-Hard
    dl_hard_qrels_migrator = Migrator(
        base_path / 'trec-dl-hard' / 'irds_version.txt',
        'v3',
        affected_files=[base_path / 'trec-dl-hard' / 'qrels'],
        message='Updating trec-dl-hard qrels')
    hard_qids = Lazy(lambda: DL_HARD_QIDS)
    dl_hard_base_queries = TsvQueries([
        Cache(GzipExtract(dlc['trec-dl-2019/queries']),
              base_path / 'trec-dl-2019/queries.tsv'),
        Cache(GzipExtract(dlc['trec-dl-2020/queries']),
              base_path / 'trec-dl-2020/queries.tsv')
    ],
                                      namespace='msmarco',
                                      lang='en')
    subsets['trec-dl-hard'] = Dataset(
        collection, FilteredQueries(dl_hard_base_queries, hard_qids),
        dl_hard_qrels_migrator(
            TrecQrels(dlc['trec-dl-hard/qrels'], TREC_DL_QRELS_DEFS)),
        documentation('trec-dl-hard'))
    hard_qids = Lazy(lambda: DL_HARD_QIDS_BYFOLD['1'])
    subsets['trec-dl-hard/fold1'] = Dataset(
        collection, FilteredQueries(dl_hard_base_queries, hard_qids),
        FilteredQrels(subsets['trec-dl-hard'], hard_qids),
        documentation('trec-dl-hard/fold1'))
    hard_qids = Lazy(lambda: DL_HARD_QIDS_BYFOLD['2'])
    subsets['trec-dl-hard/fold2'] = Dataset(
        collection, FilteredQueries(dl_hard_base_queries, hard_qids),
        FilteredQrels(subsets['trec-dl-hard'], hard_qids),
        documentation('trec-dl-hard/fold2'))
    hard_qids = Lazy(lambda: DL_HARD_QIDS_BYFOLD['3'])
    subsets['trec-dl-hard/fold3'] = Dataset(
        collection, FilteredQueries(dl_hard_base_queries, hard_qids),
        FilteredQrels(subsets['trec-dl-hard'], hard_qids),
        documentation('trec-dl-hard/fold3'))
    hard_qids = Lazy(lambda: DL_HARD_QIDS_BYFOLD['4'])
    subsets['trec-dl-hard/fold4'] = Dataset(
        collection, FilteredQueries(dl_hard_base_queries, hard_qids),
        FilteredQrels(subsets['trec-dl-hard'], hard_qids),
        documentation('trec-dl-hard/fold4'))
    hard_qids = Lazy(lambda: DL_HARD_QIDS_BYFOLD['5'])
    subsets['trec-dl-hard/fold5'] = Dataset(
        collection, FilteredQueries(dl_hard_base_queries, hard_qids),
        FilteredQrels(subsets['trec-dl-hard'], hard_qids),
        documentation('trec-dl-hard/fold5'))

    ir_datasets.registry.register(NAME, Dataset(collection,
                                                documentation('_')))
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}',
                                      Dataset(subsets[s], documentation(s)))

    return collection, subsets
示例#6
0
def _init():
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path)
    subsets = {}

    docs_dlc = dlc['docs']
    docs_chk_dlc = TarExtractAll(dlc['docs.chk'], base_path / 'corpus.chk')
    b13_dlc = Bz2Extract(
        Cache(
            TarExtract(
                dlc['cw12b-info'],
                'ClueWeb12-CreateB13/software/CreateClueWeb12B13Dataset.jar'),
            base_path / 'CreateClueWeb12B13Dataset.jar'))

    collection = ClueWeb12Docs(docs_dlc, docs_chk_dlc)
    collection_b13 = ClueWeb12Docs(ClueWeb12b13Extractor(docs_dlc, b13_dlc))

    base = Dataset(collection, documentation('_'))

    subsets['b13'] = Dataset(collection_b13, documentation('b13'))

    subsets['trec-web-2013'] = Dataset(
        collection,
        TrecXmlQueries(dlc['trec-web-2013/queries'],
                       qtype=TrecWebTrackQuery,
                       namespace='trec-web',
                       lang='en'),
        TrecQrels(dlc['trec-web-2013/qrels.adhoc'], QREL_DEFS),
        documentation('trec-web-2013'))

    subsets['trec-web-2014'] = Dataset(
        collection,
        TrecXmlQueries(dlc['trec-web-2014/queries'],
                       qtype=TrecWebTrackQuery,
                       namespace='trec-web',
                       lang='en'),
        TrecQrels(dlc['trec-web-2014/qrels.adhoc'], QREL_DEFS),
        documentation('trec-web-2014'))

    subsets['b13/ntcir-www-1'] = Dataset(
        collection_b13,
        TrecXmlQueries(Cache(
            ZipExtract(dlc['ntcir-www-1/queries'], 'eng.queries.xml'),
            base_path / 'ntcir-www-1' / 'queries.xml'),
                       qtype=GenericQuery,
                       qtype_map={
                           'qid': 'query_id',
                           'content': 'text'
                       },
                       namespace='ntcir-www',
                       lang='en'),
        NtcirQrels(dlc['ntcir-www-1/qrels'], NTCIR_QREL_DEFS),
        documentation('ntcir-www-1'))

    subsets['b13/ntcir-www-2'] = Dataset(
        collection_b13,
        TrecXmlQueries(Cache(
            ZipExtract(dlc['ntcir-www-2/queries'], 'qEng.xml'),
            base_path / 'ntcir-www-2' / 'queries.xml'),
                       qtype=NtcirQuery,
                       qtype_map=ntcir_map,
                       namespace='ntcir-www',
                       lang='en'),
        NtcirQrels(dlc['ntcir-www-2/qrels'], NTCIR_QREL_DEFS),
        documentation('ntcir-www-2'))

    subsets['b13/ntcir-www-3'] = Dataset(
        collection_b13,
        TrecXmlQueries(dlc['ntcir-www-3/queries'],
                       qtype=NtcirQuery,
                       qtype_map=ntcir_map,
                       namespace='ntcir-www',
                       lang='en'), documentation('ntcir-www-3'))

    subsets['b13/trec-misinfo-2019'] = Dataset(
        collection_b13,
        TrecXmlQueries(dlc['trec-misinfo-2019/queries'],
                       qtype=MisinfoQuery,
                       qtype_map=misinfo_map,
                       namespace='trec-misinfo-2019',
                       lang='en'),
        MsinfoQrels(dlc['trec-misinfo-2019/qrels'], MISINFO_QREL_DEFS),
        documentation('trec-misinfo-2019'))

    subsets['b13/clef-ehealth'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='en'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS), documentation('clef-ehealth'))

    subsets['b13/clef-ehealth/cs'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries/cs']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='cs'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS,
            query_id_suffix='-cs'), documentation('clef-ehealth/cs'))

    subsets['b13/clef-ehealth/de'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries/de']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='de'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS,
            query_id_suffix='-de'), documentation('clef-ehealth/de'))

    subsets['b13/clef-ehealth/fr'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries/fr']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='fr'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS,
            query_id_suffix='-fr'), documentation('clef-ehealth/fr'))

    subsets['b13/clef-ehealth/hu'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries/hu']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='hu'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS,
            query_id_suffix='-hu'), documentation('clef-ehealth/hu'))

    subsets['b13/clef-ehealth/pl'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries/pl']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='pl'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS,
            query_id_suffix='-pl'), documentation('clef-ehealth/pl'))

    subsets['b13/clef-ehealth/sv'] = Dataset(
        collection_b13,
        TrecXmlQueries(FixAmp(dlc['clef-ehealth/queries/sv']),
                       qtype=GenericQuery,
                       qtype_map=ehealth_map,
                       namespace='clef-ehealth',
                       lang='sv'),
        EhealthQrels(
            [dlc['clef-ehealth/2016.qrels'], dlc['clef-ehealth/2017.qrels']],
            [dlc['clef-ehealth/2016.qtrust'], dlc['clef-ehealth/2017.qtrust']],
            [dlc['clef-ehealth/2016.qunder'], dlc['clef-ehealth/2017.qreads']],
            EHEALTH_QREL_DEFS,
            query_id_suffix='-sv'), documentation('clef-ehealth/sv'))

    # NOTE: the following datasets are defined in touche.py:
    # - clueweb12/touche-2020-task-2
    # - clueweb12/touche-2021-task-2

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets
示例#7
0
 def read_lines(file):
     file = Cache(TarExtract(main_dlc, f'nfcorpus/raw/{file}'),
                  base_path / file)
     with file.stream() as stream:
         stream = codecs.getreader('utf8')(stream)
         return {l.rstrip() for l in stream}
示例#8
0
def _init():
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path)
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    main_dlc = dlc['main']

    collection = TsvDocs(Cache(
        TarExtract(main_dlc, 'nfcorpus/raw/doc_dump.txt'),
        base_path / 'collection.tsv'),
                         doc_cls=NfCorpusDoc,
                         namespace=NAME)
    subsets = {}

    def read_lines(file):
        file = Cache(TarExtract(main_dlc, f'nfcorpus/raw/{file}'),
                     base_path / file)
        with file.stream() as stream:
            stream = codecs.getreader('utf8')(stream)
            return {l.rstrip() for l in stream}

    nontopic_qid_filter = Lazy(lambda: read_lines('nontopics.ids'))
    video_qid_filter = Lazy(lambda: read_lines('all_videos.ids'))

    subsets['train'] = Dataset(
        collection,
        ZipQueries([
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/train.titles.queries'),
                base_path / 'train/queries.titles.tsv'),
                       namespace=NAME),
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/train.all.queries'),
                base_path / 'train/queries.all.tsv'),
                       namespace=NAME),
        ], [(0, 0), (0, 1), (1, 1)], NfCorpusQuery),
        TrecQrels(
            Cache(TarExtract(main_dlc, 'nfcorpus/train.3-2-1.qrel'),
                  base_path / 'train/qrels'), QRELS_DEFS),
        documentation('train'),
    )

    subsets['train/nontopic'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(main_dlc, 'nfcorpus/train.nontopic-titles.queries'),
            base_path / 'train/nontopic/queries.tsv'),
                   namespace=NAME),
        FilteredQrels(subsets['train'].qrels_handler(),
                      nontopic_qid_filter,
                      mode='include'),
        documentation('train/nontopic'),
    )

    subsets['train/video'] = Dataset(
        collection,
        ZipQueries([
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/train.vid-titles.queries'),
                base_path / 'train/video/queries.titles.tsv'),
                       namespace=NAME),
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/train.vid-desc.queries'),
                base_path / 'train/video/queries.desc.tsv'),
                       namespace=NAME),
        ], [(0, 0), (0, 1), (1, 1)], NfCorpusVideoQuery),
        TsvQueries(Cache(
            TarExtract(main_dlc, 'nfcorpus/train.nontopic-titles.queries'),
            base_path / 'train/video/queries.tsv'),
                   NfCorpusVideoQuery,
                   namespace=NAME),
        FilteredQrels(subsets['train'].qrels_handler(),
                      video_qid_filter,
                      mode='include'),
        documentation('train/video'),
    )

    subsets['dev'] = Dataset(
        collection,
        ZipQueries([
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/dev.titles.queries'),
                base_path / 'dev/queries.titles.tsv'),
                       namespace=NAME),
            TsvQueries(Cache(TarExtract(main_dlc, 'nfcorpus/dev.all.queries'),
                             base_path / 'dev/queries.all.tsv'),
                       namespace=NAME),
        ], [(0, 0), (0, 1), (1, 1)], NfCorpusQuery),
        TrecQrels(
            Cache(TarExtract(main_dlc, 'nfcorpus/dev.3-2-1.qrel'),
                  base_path / 'dev/qrels'), QRELS_DEFS),
        documentation('dev'),
    )

    subsets['dev/nontopic'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(main_dlc, 'nfcorpus/dev.nontopic-titles.queries'),
            base_path / 'dev/nontopic/queries.tsv'),
                   namespace=NAME),
        FilteredQrels(subsets['dev'].qrels_handler(),
                      nontopic_qid_filter,
                      mode='include'),
        documentation('dev/nontopic'),
    )

    subsets['dev/video'] = Dataset(
        collection,
        ZipQueries([
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/dev.vid-titles.queries'),
                base_path / 'dev/video/queries.titles.tsv'),
                       namespace=NAME),
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/dev.vid-desc.queries'),
                base_path / 'dev/video/queries.desc.tsv'),
                       namespace=NAME),
        ], [(0, 0), (0, 1), (1, 1)], NfCorpusVideoQuery),
        TsvQueries(Cache(
            TarExtract(main_dlc, 'nfcorpus/dev.nontopic-titles.queries'),
            base_path / 'dev/video/queries.tsv'),
                   NfCorpusVideoQuery,
                   namespace=NAME),
        FilteredQrels(subsets['dev'].qrels_handler(),
                      video_qid_filter,
                      mode='include'),
        documentation('dev/video'),
    )

    subsets['test'] = Dataset(
        collection,
        ZipQueries([
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/test.titles.queries'),
                base_path / 'test/queries.titles.tsv'),
                       namespace=NAME),
            TsvQueries(Cache(TarExtract(main_dlc, 'nfcorpus/test.all.queries'),
                             base_path / 'test/queries.all.tsv'),
                       namespace=NAME),
        ], [(0, 0), (0, 1), (1, 1)], NfCorpusQuery),
        TrecQrels(
            Cache(TarExtract(main_dlc, 'nfcorpus/test.3-2-1.qrel'),
                  base_path / 'test/qrels'), QRELS_DEFS),
        documentation('test'),
    )

    subsets['test/nontopic'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(main_dlc, 'nfcorpus/test.nontopic-titles.queries'),
            base_path / 'test/nontopic/queries.tsv'),
                   namespace=NAME),
        FilteredQrels(subsets['test'].qrels_handler(),
                      nontopic_qid_filter,
                      mode='include'),
        documentation('test/nontopic'),
    )

    subsets['test/video'] = Dataset(
        collection,
        ZipQueries([
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/test.vid-titles.queries'),
                base_path / 'test/video/queries.titles.tsv'),
                       namespace=NAME),
            TsvQueries(Cache(
                TarExtract(main_dlc, 'nfcorpus/test.vid-desc.queries'),
                base_path / 'test/video/queries.desc.tsv'),
                       namespace=NAME),
        ], [(0, 0), (0, 1), (1, 1)], NfCorpusVideoQuery),
        TsvQueries(Cache(
            TarExtract(main_dlc, 'nfcorpus/test.nontopic-titles.queries'),
            base_path / 'test/video/queries.tsv'),
                   NfCorpusVideoQuery,
                   namespace=NAME),
        FilteredQrels(subsets['test'].qrels_handler(),
                      video_qid_filter,
                      mode='include'),
        documentation('test/video'),
    )

    ir_datasets.registry.register(NAME, Dataset(collection,
                                                documentation('_')))
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return collection, subsets
示例#9
0
def _init():
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')
    base_path = ir_datasets.util.home_path()/NAME
    dlc = DownloadConfig.context(NAME, base_path)
    subsets = {}

    docs_dlc = dlc['docs']
    doccount_dlc = Gov2DocCountFile(os.path.join(base_path, 'corpus.doccounts'), docs_dlc)
    collection = Gov2Docs(docs_dlc, doccount_dlc)
    base = Dataset(collection, documentation('_'))

    subsets['trec-tb-2004'] = Dataset(
        collection,
        TrecQueries(dlc['trec-tb-2004/queries'], namespace=NAME, lang='en'),
        TrecQrels(dlc['trec-tb-2004/qrels'], QREL_DEFS),
        documentation('trec-tb-2004')
    )
    subsets['trec-tb-2005'] = Dataset(
        collection,
        TrecQueries(dlc['trec-tb-2005/queries'], namespace=NAME, lang='en'),
        TrecQrels(dlc['trec-tb-2005/qrels'], QREL_DEFS),
        documentation('trec-tb-2005')
    )
    subsets['trec-tb-2005/named-page'] = Dataset(
        collection,
        TrecQueries(dlc['trec-tb-2005/named-page/queries'], qtype=GenericQuery, qtype_map=NAMED_PAGE_QTYPE_MAP, namespace=NAME, lang='en'),
        TrecQrels(dlc['trec-tb-2005/named-page/qrels'], NAMED_PAGE_QREL_DEFS),
        documentation('trec-tb-2005/named-page')
    )
    subsets['trec-tb-2005/efficiency'] = Dataset(
        collection,
        TrecColonQueries(GzipExtract(dlc['trec-tb-2005/efficiency/queries']), encoding='latin1', namespace=NAME, lang='en'),
        RewriteQids(TrecQrels(dlc['trec-tb-2005/qrels'], QREL_DEFS), EFF_MAP_05),
        documentation('trec-tb-2005/efficiency')
    )
    subsets['trec-tb-2006'] = Dataset(
        collection,
        TrecQueries(dlc['trec-tb-2006/queries'], namespace=NAME, lang='en'),
        TrecQrels(dlc['trec-tb-2006/qrels'], QREL_DEFS),
        documentation('trec-tb-2006')
    )
    subsets['trec-tb-2006/named-page'] = Dataset(
        collection,
        TrecQueries(dlc['trec-tb-2006/named-page/queries'], qtype=GenericQuery, qtype_map=NAMED_PAGE_QTYPE_MAP, namespace=NAME, lang='en'),
        TrecQrels(dlc['trec-tb-2006/named-page/qrels'], NAMED_PAGE_QREL_DEFS),
        documentation('trec-tb-2006/named-page')
    )
    subsets['trec-tb-2006/efficiency'] = Dataset(
        collection,
        TrecColonQueries(TarExtract(dlc['trec-tb-2006/efficiency/queries'], '06.efficiency_topics.all'), encoding='latin1', namespace=NAME, lang='en'),
        RewriteQids(TrecQrels(dlc['trec-tb-2006/qrels'], QREL_DEFS), EFF_MAP_06),
        documentation('trec-tb-2006/efficiency')
    )
    subsets['trec-tb-2006/efficiency/10k'] = Dataset(
        collection,
        TrecColonQueries(TarExtract(dlc['trec-tb-2006/efficiency/queries'], '06.efficiency_topics.10k'), encoding='latin1', namespace=NAME, lang='en'),
        documentation('trec-tb-2006/efficiency/10k')
    )
    subsets['trec-tb-2006/efficiency/stream1'] = Dataset(
        collection,
        TrecColonQueries(TarExtract(dlc['trec-tb-2006/efficiency/queries'], '06.efficiency_topics.stream-1'), encoding='latin1', namespace=NAME, lang='en'),
        documentation('trec-tb-2006/efficiency/stream1')
    )
    subsets['trec-tb-2006/efficiency/stream2'] = Dataset(
        collection,
        TrecColonQueries(TarExtract(dlc['trec-tb-2006/efficiency/queries'], '06.efficiency_topics.stream-2'), encoding='latin1', namespace=NAME, lang='en'),
        documentation('trec-tb-2006/efficiency/stream2')
    )
    subsets['trec-tb-2006/efficiency/stream3'] = Dataset(
        collection,
        TrecColonQueries(TarExtract(dlc['trec-tb-2006/efficiency/queries'], '06.efficiency_topics.stream-3'), encoding='latin1', namespace=NAME, lang='en'),
        RewriteQids(TrecQrels(dlc['trec-tb-2006/qrels'], QREL_DEFS), EFF_MAP_06),
        documentation('trec-tb-2006/efficiency/stream3')
    )
    subsets['trec-tb-2006/efficiency/stream4'] = Dataset(
        collection,
        TrecColonQueries(TarExtract(dlc['trec-tb-2006/efficiency/queries'], '06.efficiency_topics.stream-4'), encoding='latin1', namespace=NAME, lang='en'),
        documentation('trec-tb-2006/efficiency/stream4')
    )

    subsets['trec-mq-2007'] = Dataset(
        collection,
        TrecColonQueries(GzipExtract(dlc['trec-mq-2007/queries']), encoding='latin1'),
        TrecPrels(dlc['trec-mq-2007/qrels'], QREL_DEFS),
        documentation('trec-mq-2007')
    )
    subsets['trec-mq-2008'] = Dataset(
        collection,
        TrecColonQueries(GzipExtract(dlc['trec-mq-2008/queries']), encoding='latin1', namespace='trec-mq', lang='en'),
        TrecPrels(TarExtract(dlc['trec-mq-2008/qrels'], '2008.RC1/prels'), QREL_DEFS),
        documentation('trec-mq-2008')
    )

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets
        return 'trec-robust04'

    def docs_lang(self):
        return 'en'


DL_ANSERINI_ROBUST04 = ir_datasets.util.Download(
    [
        ir_datasets.util.RequestsDownload(
            'https://git.uwaterloo.ca/jimmylin/anserini-indexes/raw/master/index-robust04-20191213.tar.gz'
        )
    ],
    expected_md5='15f3d001489c97849a010b0a4734d018')

DL_ANSERINI_ROBUST04 = Cache(
    TarExtract(DL_ANSERINI_ROBUST04, 'index-robust04-20191213/_h.fdt'),
    base_path / 'lucene_source.fdt')

collection = AnseriniRobustDocs(DL_ANSERINI_ROBUST04)

for ds_name in [
        'trec-robust04', 'trec-robust04/fold1', 'trec-robust04/fold2',
        'trec-robust04/fold3', 'trec-robust04/fold4', 'trec-robust04/fold5'
]:
    main_ds = ir_datasets.load(ds_name)
    dataset = ir_datasets.Dataset(
        collection,
        main_ds.queries_handler(),
        main_ds.qrels_handler(),
    )
示例#11
0
def _init():
    subsets = {}
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path)
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')

    collection = TrecDocs(dlc['benchmark'],
                          parser='tut',
                          path_globs=['**/docs_grp_*.txt'],
                          namespace=NAME,
                          lang='en',
                          count_hint=ir_datasets.util.count_hint(NAME))
    topics_and_qrels = TarExtractAll(
        dlc['benchmark'],
        base_path / "topics_and_qrels",
        path_globs=['**/topics.*.txt', '**/qrels.*.txt'])
    val_runs = TarExtractAll(dlc['dlfiles'],
                             base_path / "val_runs",
                             path_globs=['**/run.trip.BM25.*.val.txt'])
    test_runs = TarExtractAll(dlc['dlfiles_runs_test'],
                              base_path / "test_runs",
                              path_globs=['**/run.trip.BM25.*.test.txt'])

    base = Dataset(collection, documentation('_'))

    subsets['logs'] = Dataset(
        TsvDocs(Cache(
            FixAllarticles(TarExtract(dlc['logs'], 'logs/allarticles.txt')),
            base_path / 'allarticles-fixed.tsv'),
                doc_cls=TripClickPartialDoc,
                lang='en',
                count_hint=ir_datasets.util.count_hint(f'{NAME}/logs')),
        TripClickQlogs(
            TarExtractAll(dlc['logs'],
                          base_path / 'logs',
                          path_globs=['**/*.json'])), documentation('logs'))

    ### Train

    subsets['train/head'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.head.train.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.raw.head.train.txt'),
            QREL_DEFS), documentation('train/head'))

    subsets['train/head/dctr'] = Dataset(
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.dctr.head.train.txt'),
            QREL_DCTR_DEFS), subsets['train/head'],
        documentation('train/head/dctr'))

    subsets['train/torso'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.torso.train.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.raw.torso.train.txt'),
            QREL_DEFS), documentation('train/torso'))

    subsets['train/tail'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.tail.train.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.raw.tail.train.txt'),
            QREL_DEFS), documentation('train/tail'))

    train_queries = ConcatQueries([
        subsets['train/head'].queries_handler(),
        subsets['train/torso'].queries_handler(),
        subsets['train/tail'].queries_handler(),
    ])
    train_docpairs = DocPairGenerator(
        TarExtract(dlc['dlfiles'], 'dlfiles/triples.train.tsv'), collection,
        train_queries, base_path / 'train.docpairs')
    subsets['train'] = Dataset(
        collection, train_queries,
        ConcatQrels([
            subsets['train/head'].qrels_handler(),
            subsets['train/torso'].qrels_handler(),
            subsets['train/tail'].qrels_handler(),
        ]), TsvDocPairs(train_docpairs), documentation('train'))
    subsets['train/hofstaetter-triples'] = Dataset(
        collection, train_queries, subsets['train'].qrels_handler(),
        TsvDocPairs(dlc['hofstaetter-triples']),
        documentation('train/hofstaetter-triples'))

    ### Val

    subsets['val/head'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.head.val.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.raw.head.val.txt'), QREL_DEFS),
        TrecScoredDocs(
            RelativePath(val_runs, 'dlfiles/run.trip.BM25.head.val.txt')),
        documentation('val/head'))

    subsets['val/head/dctr'] = Dataset(
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.dctr.head.val.txt'),
            QREL_DCTR_DEFS), subsets['val/head'],
        documentation('val/head/dctr'))

    subsets['val/torso'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.torso.val.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.raw.torso.val.txt'),
            QREL_DEFS),
        TrecScoredDocs(
            RelativePath(val_runs, 'dlfiles/run.trip.BM25.torso.val.txt')),
        documentation('val/torso'))

    subsets['val/tail'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.tail.val.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecQrels(
            RelativePath(topics_and_qrels,
                         'benchmark/qrels/qrels.raw.tail.val.txt'), QREL_DEFS),
        TrecScoredDocs(
            RelativePath(val_runs, 'dlfiles/run.trip.BM25.tail.val.txt')),
        documentation('val/tail'))

    subsets['val'] = Dataset(
        collection,
        ConcatQueries([
            subsets['val/head'].queries_handler(),
            subsets['val/torso'].queries_handler(),
            subsets['val/tail'].queries_handler(),
        ]),
        ConcatQrels([
            subsets['val/head'].qrels_handler(),
            subsets['val/torso'].qrels_handler(),
            subsets['val/tail'].qrels_handler(),
        ]),
        ConcatScoreddocs([
            subsets['val/head'].scoreddocs_handler(),
            subsets['val/torso'].scoreddocs_handler(),
            subsets['val/tail'].scoreddocs_handler(),
        ]), documentation('val'))

    ### Test

    subsets['test/head'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.head.test.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecScoredDocs(
            RelativePath(test_runs, 'runs_test/run.trip.BM25.head.test.txt')),
        documentation('val/head'))

    subsets['test/torso'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.torso.test.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecScoredDocs(
            RelativePath(test_runs, 'runs_test/run.trip.BM25.torso.test.txt')),
        documentation('test/torso'))

    subsets['test/tail'] = Dataset(
        collection,
        TrecQueries(RelativePath(topics_and_qrels,
                                 'benchmark/topics/topics.tail.test.txt'),
                    qtype=GenericQuery,
                    qtype_map=QTYPE_MAP,
                    namespace=NAME,
                    lang='en'),
        TrecScoredDocs(
            RelativePath(test_runs, 'runs_test/run.trip.BM25.tail.test.txt')),
        documentation('test/tail'))

    subsets['test'] = Dataset(
        collection,
        ConcatQueries([
            subsets['test/head'].queries_handler(),
            subsets['test/torso'].queries_handler(),
            subsets['test/tail'].queries_handler(),
        ]),
        ConcatScoreddocs([
            subsets['test/head'].scoreddocs_handler(),
            subsets['test/torso'].scoreddocs_handler(),
            subsets['test/tail'].scoreddocs_handler(),
        ]), documentation('test'))

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets
示例#12
0
def _init():
    documentation = YamlDocumentation('docs/msmarco-passage.yaml')
    base_path = ir_datasets.util.home_path() / 'msmarco-passage'
    dlc = DownloadConfig.context('msmarco-passage', base_path, dua=DUA)
    collection = TsvDocs(Cache(
        FixEncoding(TarExtract(dlc['collectionandqueries'], 'collection.tsv')),
        base_path / 'collection.tsv'),
                         namespace='msmarco')
    subsets = {}

    subsets['train'] = Dataset(
        collection,
        TsvQueries(Cache(TarExtract(dlc['queries'], 'queries.train.tsv'),
                         base_path / 'train/queries.tsv'),
                   namespace='msmarco'),
        TrecQrels(dlc['train/qrels'], QRELS_DEFS),
        TsvDocPairs(GzipExtract(dlc['train/docpairs'])),
        TrecScoredDocs(
            Cache(
                ExtractQidPid(
                    TarExtract(dlc['train/scoreddocs'], 'top1000.train.txt')),
                base_path / 'train/ms.run')),
    )

    subsets['dev'] = Dataset(
        collection,
        TsvQueries(Cache(TarExtract(dlc['queries'], 'queries.dev.tsv'),
                         base_path / 'dev/queries.tsv'),
                   namespace='msmarco'),
        TrecQrels(dlc['dev/qrels'], QRELS_DEFS),
        TrecScoredDocs(
            Cache(
                ExtractQidPid(TarExtract(dlc['dev/scoreddocs'],
                                         'top1000.dev')),
                base_path / 'dev/ms.run')),
    )

    subsets['dev/small'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(dlc['collectionandqueries'], 'queries.dev.small.tsv'),
            base_path / 'dev/small/queries.tsv'),
                   namespace='msmarco'),
        TrecQrels(
            Cache(
                TarExtract(dlc['collectionandqueries'], 'qrels.dev.small.tsv'),
                base_path / 'dev/small/qrels'), QRELS_DEFS),
    )

    subsets['eval'] = Dataset(
        collection,
        TsvQueries(Cache(TarExtract(dlc['queries'], 'queries.eval.tsv'),
                         base_path / 'eval/queries.tsv'),
                   namespace='msmarco'),
        TrecScoredDocs(
            Cache(
                ExtractQidPid(
                    TarExtract(dlc['eval/scoreddocs'], 'top1000.eval')),
                base_path / 'eval/ms.run')),
    )

    subsets['eval/small'] = Dataset(
        collection,
        TsvQueries(Cache(
            TarExtract(dlc['collectionandqueries'], 'queries.eval.small.tsv'),
            base_path / 'eval/small/queries.tsv'),
                   namespace='msmarco'),
    )

    subsets['trec-dl-2019'] = Dataset(
        collection,
        TrecQrels(dlc['trec-dl-2019/qrels'], TREC_DL_QRELS_DEFS),
        TsvQueries(Cache(GzipExtract(dlc['trec-dl-2019/queries']),
                         base_path / 'trec-dl-2019/queries.tsv'),
                   namespace='msmarco'),
        TrecScoredDocs(
            Cache(ExtractQidPid(GzipExtract(dlc['trec-dl-2019/scoreddocs'])),
                  base_path / 'trec-dl-2019/ms.run')),
    )

    subsets['trec-dl-2020'] = Dataset(
        collection,
        TsvQueries(GzipExtract(dlc['trec-dl-2020/queries']),
                   namespace='msmarco'),
        TrecScoredDocs(
            Cache(ExtractQidPid(GzipExtract(dlc['trec-dl-2020/scoreddocs'])),
                  base_path / 'trec-dl-2020/ms.run')),
    )

    # A few subsets that are contrainted to just the queries/qrels/docpairs that have at least
    # 1 relevance assessment
    train_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['train'].qrels_iter()})
    subsets['train/judged'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(), train_judged),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(),
                           train_judged),
        subsets['train'],
    )

    dev_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['dev'].qrels_iter()})
    subsets['dev/judged'] = Dataset(
        FilteredQueries(subsets['dev'].queries_handler(), dev_judged),
        FilteredScoredDocs(subsets['dev'].scoreddocs_handler(), dev_judged),
        subsets['dev'],
    )

    dl19_judged = Lazy(
        lambda: {q.query_id
                 for q in subsets['trec-dl-2019'].qrels_iter()})
    subsets['trec-dl-2019/judged'] = Dataset(
        FilteredQueries(subsets['trec-dl-2019'].queries_handler(),
                        dl19_judged),
        FilteredScoredDocs(subsets['trec-dl-2019'].scoreddocs_handler(),
                           dl19_judged),
        subsets['trec-dl-2019'],
    )

    # split200 -- 200 queries held out from the training data for validation
    split200 = Lazy(lambda: SPLIT200_QIDS)
    subsets['train/split200-train'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(),
                        split200,
                        mode='exclude'),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(),
                           split200,
                           mode='exclude'),
        FilteredQrels(subsets['train'].qrels_handler(),
                      split200,
                      mode='exclude'),
        FilteredDocPairs(subsets['train'].docpairs_handler(),
                         split200,
                         mode='exclude'),
        subsets['train'],
    )
    subsets['train/split200-valid'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(),
                        split200,
                        mode='include'),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(),
                           split200,
                           mode='include'),
        FilteredQrels(subsets['train'].qrels_handler(),
                      split200,
                      mode='include'),
        FilteredDocPairs(subsets['train'].docpairs_handler(),
                         split200,
                         mode='include'),
        subsets['train'],
    )

    # Medical subset
    def train_med():
        with dlc['medmarco_ids'].stream() as stream:
            stream = codecs.getreader('utf8')(stream)
            return {l.rstrip() for l in stream}

    train_med = Lazy(train_med)
    subsets['train/medical'] = Dataset(
        FilteredQueries(subsets['train'].queries_handler(), train_med),
        FilteredScoredDocs(subsets['train'].scoreddocs_handler(), train_med),
        FilteredDocPairs(subsets['train'].docpairs_handler(), train_med),
        FilteredQrels(subsets['train'].qrels_handler(), train_med),
        subsets['train'],
    )

    ir_datasets.registry.register('msmarco-passage',
                                  Dataset(collection, documentation('_')))
    for s in sorted(subsets):
        ir_datasets.registry.register(f'msmarco-passage/{s}',
                                      Dataset(subsets[s], documentation(s)))

    return collection, subsets
示例#13
0
def _init():
    subsets = {}
    base_path = ir_datasets.util.home_path() / NAME
    dlc = DownloadConfig.context(NAME, base_path)
    documentation = YamlDocumentation(f'docs/{NAME}.yaml')

    manager = AolManager([
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-01.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-02.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-03.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-04.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-05.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-06.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-07.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-08.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-09.txt.gz')),
        GzipExtract(
            TarExtract(
                dlc['logs'],
                'AOL-user-ct-collection/user-ct-test-collection-10.txt.gz')),
    ], GzipExtract(dlc['id2wb']), base_path)

    base = Dataset(
        DocstoreBackedDocs(manager.docs_store,
                           docs_cls=AolIaDoc,
                           namespace=NAME,
                           lang=None),
        TsvQueries(manager.file_ref('queries.tsv'), lang=None),
        TrecQrels(manager.file_ref('qrels'), QREL_DEFS),
        AolQlogs(manager.file_ref('log.pkl.lz4')), documentation('_'))

    ir_datasets.registry.register(NAME, base)
    for s in sorted(subsets):
        ir_datasets.registry.register(f'{NAME}/{s}', subsets[s])

    return base, subsets, manager, base_path