示例#1
0
n2.init_lt(state)
n1.init_lt(state)

flips = np.array(np.random.choice(np.arange(n1.nv), 2))

lv_match = np.all(np.isclose(n1.log_val(state), n2.log_val(state)))
lp_match = np.all(np.isclose(n1.log_pop(state, flips), n2.log_pop(state, flips)))
print("Log_val matches: {}".format(lv_match))
print("Log_pop matches: {}".format(lp_match))

if not (lv_match and lp_match):
    exit()

nruns = 1000
h = ising1d.Ising1d(40, 0.5)

print("Sampling n1 ...")

start_time = time.time()
s1 = sampler.Sampler(n1, h)
s1.run(nruns)
print("time elapsed: {:.2f}s".format(time.time() - start_time))

print("Sampling n2 ...")

start_time = time.time()
s2 = sampler.Sampler(n2, h)
s2.run(nruns)
print("time elapsed: {:.2f}s".format(time.time() - start_time))
示例#2
0
alpha = 2
m = True

wf = nqs.NqsTI(nspins, alpha)  # A translation invariant NQS instance

wf.Wreduced = 0.1 * np.random.uniform(
    -1, 1, wf.Wreduced.shape) + 0j  # Fill in with starting values
if type(wf.a) == int:
    wf.a = 0.1 * np.random.uniform(-1, 1) + 0j
else:
    wf.a = 0.1 * np.random.uniform(-1, 1) * np.ones(wf.a.shape) + 0j
wf.breduced = 0.1 * np.random.uniform(-1, 1, wf.breduced.shape) + 0j

#wf.load_parameters('../Outputs/'+str(nspins)+'_alpha='+str(alpha)+'_Ising10_ti_100.npz')

h = ising1d.Ising1d(nspins, 1.0)
#h = heisenberg1d.Heisenberg1d(10,1)
#h = xyz.XYZ(10,(-1,-1,0))
#h = fermionhop1d.FermionHop(nspins,-2)
base_array = -1 * np.ones(nspins)
base_array[0:nspins // 2] *= -1
state = np.random.permutation(
    base_array)  # return a random permutation of the half 1, half-1 array
wf.init_lt(state)

s = sampler.Sampler(wf, h, mag0=m)
s.run(nruns, init_state=state)

state = s.state
wf.init_lt(state)
示例#3
0
import nqs
import numpy as np
import sampler
import observables
import time
import matplotlib.pyplot as plt
import distances
import ising1d

#Script to generate the data -- sigmax(t) for all our time-evolved wave functions
nsteps = 400
data_rate = 5
nruns = 1000
talk_rate = 25
h = ising1d.Ising1d(10, 1.0)

## Now that we have all the wavefunctions generated, find the <sigma(x)> at each one

#Fully connected translation-invariant
print("Fully connected ANNQS")
sxnonloc = []
nonlocerr = []
wf = nqs.NqsTI(10, 1)
start_time = time.time()
for t in np.arange(0, nsteps, data_rate):
    if t % talk_rate == 0:
        print('t = {}'.format(t))
    wf.load_parameters('../Outputs/10SpinEvolve/evolution_ti_' + str(t) +
                       '.npz')
    s = sampler.Sampler(wf,
                        observables.Sigmax(10, 1),
示例#4
0
import ising1d
import fermionhop1d
import nqs
import trainer
import sampler
import numpy as np
import matplotlib.pyplot as plt
import time

start = time.time()
nruns = 1000
k = 2
gam = .01
nspins = 10
#h = heisenberg1d.Heisenberg1d(nspins,1)
h = ising1d.Ising1d(10, 0.5)
#h = fermionhop1d.FermionHop(nspins,1)

wf = nqs.NqsLocal(nspins, 1, k)  # A local NQS instance

wf.W = 0.1 * np.random.random(wf.W.shape) + 0j  # Fill in with starting values
wf.a = 0.1 * np.random.random(wf.a.shape) + 0j
wf.b = 0.1 * np.random.random(wf.b.shape) + 0j

base_array = np.concatenate(
    (np.ones(int(1)),
     -1 * np.ones(int(nspins - 1))))  # make an array of half 1, half -1
state = np.random.permutation(
    base_array)  # return a random permutation of the half 1, half-1 array
wf.init_lt(state)