示例#1
0
    def __init__(self, config: configs.Config, loglevel: str, logfile: str, worker_id: int = None, total_workers: int = None):
        """
        Worker class to help run a subset of spectra.

        Args:
            config: isofit configuration
            loglevel: output logging level
            logfile: output logging file
            worker_id: worker ID for logging reference
            total_workers: the total number of workers running, for logging reference
        """

        logging.basicConfig(format='%(levelname)s:%(message)s', level=loglevel, filename=logfile)
        self.config = config
        self.fm = ForwardModel(self.config)

        if self.config.implementation.mode == 'mcmc_inversion':
            self.iv = MCMCInversion(self.config, self.fm)
        elif self.config.implementation.mode in ['inversion', 'simulation']:
            self.iv = Inversion(self.config, self.fm)
        else:
            # This should never be reached due to configuration checking
            raise AttributeError('Config implementation mode node valid')

        self.io = IO(self.config, self.fm)

        self.approximate_total_spectra = None
        if total_workers is not None:
            self.approximate_total_spectra = self.io.n_cols * self.io.n_rows / total_workers
        self.worker_id = worker_id
        self.completed_spectra = 0
示例#2
0
    def _init_nonpicklable_objects(self) -> None:
        """ Internal function to initialize objects that cannot be pickled
        """
        self.fm = ForwardModel(self.config)

        if self.config.implementation.mode == 'mcmc_inversion':
            self.iv = MCMCInversion(self.config, self.fm)
        elif self.config.implementation.mode in ['inversion', 'simulation']:
            self.iv = Inversion(self.config, self.fm)
        else:
            # This should never be reached due to configuration checking
            raise AttributeError('Config implementation mode node valid')
示例#3
0
    def __init__(self, config: configs.Config, loglevel: str, logfile: str):

        logging.basicConfig(format='%(levelname)s:%(message)s', level=loglevel, filename=logfile)
        self.config = config
        self.fm = ForwardModel(self.config)

        if self.config.implementation.mode == 'mcmc_inversion':
            self.iv = MCMCInversion(self.config, self.fm)
        elif self.config.implementation.mode in ['inversion', 'simulation']:
            self.iv = Inversion(self.config, self.fm)
        else:
            # This should never be reached due to configuration checking
            raise AttributeError('Config implementation mode node valid')

        self.io = IO(self.config, self.fm)
示例#4
0
def run_forward():
    """Simulate the remote measurement of a spectrally uniform surface."""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_forward.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    io = IO(config, fm, iv, [0], [0])

    # Simulate a measurement and write result
    for row, col, meas, geom, configs in io:
        states = iv.invert(meas, geom)
        io.write_spectrum(row, col, states, meas, geom)

    assert True
    return states[0]
示例#5
0
def run_forward():
    """Simulate the remote measurement of a spectrally uniform surface."""

    # Configure the surface/atmosphere/instrument model
    testdir, fname = os.path.split(os.path.abspath(__file__))
    datadir = os.path.join(testdir, 'data')
    config = create_new_config(os.path.join(datadir, 'config_forward.json'))
    fm = ForwardModel(config)
    iv = Inversion(config, fm)
    io = IO(config, fm, iv, [0], [0])

    # Simulate a measurement and write result
    for row, col, meas, geom, configs in io:
        states = iv.invert(meas, geom)
        io.write_spectrum(row, col, states, meas, geom)

    assert True
    return states[0]
示例#6
0
def run_inverse():
    """Invert the remote measurement."""

    # Configure the surface/atmosphere/instrument model
    config = load_config('config_inversion.json')
    fm = ForwardModel(config['forward_model'])
    iv = Inversion(config['inversion'], fm)
    io = IO(config, fm, iv, [0], [0])
    geom = None

    # Get our measurement from the simulation results, and invert.
    # Calculate uncertainties at the solution state, write result
    for row, col, meas, geom, configs in io:
        states = iv.invert(meas, geom)
        io.write_spectrum(row, col, states, meas, geom)

    assert True
    return states[-1]
示例#7
0
def run_inverse():
    """Invert the remote measurement."""

    # Configure the surface/atmosphere/instrument model
    testdir, fname = os.path.split(os.path.abspath(__file__))
    datadir = os.path.join(testdir, 'data')
    config = create_new_config(os.path.join(datadir, 'config_forward.json'))
    fm = ForwardModel(config)
    iv = Inversion(config, fm)
    io = IO(config, fm, iv, [0], [0])
    geom = None

    # Get our measurement from the simulation results, and invert.
    # Calculate uncertainties at the solution state, write result
    for row, col, meas, geom, configs in io:
        states = iv.invert(meas, geom)
        io.write_spectrum(row, col, states, meas, geom)

    assert True
    return states[-1]
示例#8
0
def run_forward():
    """Simulate the remote measurement of a spectrally uniform surface."""

    # Configure the surface/atmosphere/instrument model
    testdir, fname = os.path.split(os.path.abspath(__file__))
    datadir = os.path.join(testdir, 'data')
    config = create_new_config(os.path.join(datadir, 'config_forward.json'))
    fm = ForwardModel(config)
    iv = Inversion(config, fm)
    io = IO(config, fm)

    # Simulate a measurement and write result
    for row in range(io.n_rows):
        for col in range(io.n_cols):
            id = io.get_components_at_index(row, col)
            if id is not None:
                states = iv.invert(id.meas, id.geom)
                io.write_spectrum(row, col, states, fm, iv)

    assert True
    return states[0]
示例#9
0
def run_inverse():
    """Invert the remote measurement."""

    # Configure the surface/atmosphere/instrument model
    testdir, fname = os.path.split(os.path.abspath(__file__))
    datadir = os.path.join(testdir, 'data')
    config = create_new_config(os.path.join(datadir, 'config_forward.json'))
    fm = ForwardModel(config)
    iv = Inversion(config, fm)
    io = IO(config, fm)

    # Get our measurement from the simulation results, and invert.
    # Calculate uncertainties at the solution state, write result
    for row in range(io.n_rows):
        for col in range(io.n_cols):
            id = io.get_components_at_index(row, col)
            if id is not None:
                states = iv.invert(id.meas, id.geom)
                io.write_spectrum(row, col, states, fm, iv)

    assert True
    return states[-1]
示例#10
0
    def run(self, row_column = None):
        """
        Iterate over spectra, reading and writing through the IO
        object to handle formatting, buffering, and deferred write-to-file.
        Attempts to avoid reading the entire file into memory, or hitting
        the physical disk too often.

        row_column: The user can specify
            * a single number, in which case it is interpreted as a row
            * a comma-separated pair, in which case it is interpreted as a
              row/column tuple (i.e. a single spectrum)
            * a comma-separated quartet, in which case it is interpreted as
              a row, column range in the order (line_start, line_end, sample_start,
              sample_end) all values are inclusive.

            If none of the above, the whole cube will be analyzed.
        """

        logging.info("Building first forward model, will generate any necessary LUTs")
        fm = ForwardModel(self.config)
        if row_column is not None:
            ranges = row_column.split(',')
            if len(ranges) == 1:
                self.rows, self.cols = [int(ranges[0])], None
            if len(ranges) == 2:
                row_start, row_end = ranges
                self.rows, self.cols = range(
                    int(row_start), int(row_end)), None
            elif len(ranges) == 4:
                row_start, row_end, col_start, col_end = ranges
                self.rows = range(int(row_start), int(row_end) + 1)
                self.cols = range(int(col_start), int(col_end) + 1)
        else:
            io = IO(self.config, fm)
            self.rows = range(io.n_rows)
            self.cols = range(io.n_cols)
            del io, fm

        index_pairs = np.vstack([x.flatten(order='f') for x in np.meshgrid(self.rows, self.cols)]).T

        n_iter = index_pairs.shape[0]

        if self.config.implementation.n_cores is None:
            n_workers = multiprocessing.cpu_count()
        else:
            n_workers = self.config.implementation.n_cores

        # Max out the number of workers based on the number of tasks
        n_workers = min(n_workers, n_iter)

        if self.workers is None:
            remote_worker = ray.remote(Worker)
            self.workers = ray.util.ActorPool([remote_worker.remote(self.config, self.loglevel, self.logfile, n, n_workers)
                                               for n in range(n_workers)])

        start_time = time.time()
        n_tasks = min(n_workers * self.config.implementation.task_inflation_factor, n_iter)

        logging.info(f'Beginning {n_iter} inversions in {n_tasks} chunks using {n_workers} cores')

        # Divide up spectra to run into chunks
        index_sets = np.linspace(0, n_iter, num=n_tasks, dtype=int)
        if len(index_sets) == 1:
            indices_to_run = [index_pairs[0:1,:]]
        else:
            indices_to_run = [index_pairs[index_sets[l]:index_sets[l + 1], :]
                              for l in range(len(index_sets) - 1)]

        res = list(self.workers.map_unordered(lambda a, b: a.run_set_of_spectra.remote(b),
                                              indices_to_run))

        total_time = time.time() - start_time
        logging.info(f'Inversions complete.  {round(total_time,2)}s total, {round(n_iter/total_time,4)} spectra/s, '
                     f'{round(n_iter/total_time/n_workers,4)} spectra/s/core')
示例#11
0
    def build_output(self, states: List, input_data: InputData,
                     fm: ForwardModel, iv: Inversion):
        """
        Build the output to be written to disk as a dictionary

        Args:
            states: results states from inversion.  In the MCMC case, these are interpreted as samples from the
            posterior, otherwise they are a gradient descent trajectory (with the last spectrum being the converged
            solution).
            input_data: an InputData object
            fm: the forward model used to solve the inversion
            iv: the inversion object
        """

        if len(states) == 0:
            # Write a bad data flag
            atm_bad = np.zeros(len(fm.instrument.n_chan) * 5) * -9999.0
            state_bad = np.zeros(len(fm.statevec)) * -9999.0
            data_bad = np.zeros(fm.instrument.n_chan) * -9999.0
            to_write = {
                'estimated_state_file': state_bad,
                'estimated_reflectance_file': data_bad,
                'estimated_emission_file': data_bad,
                'modeled_radiance_file': data_bad,
                'apparent_reflectance_file': data_bad,
                'path_radiance_file': data_bad,
                'simulated_measurement_file': data_bad,
                'algebraic_inverse_file': data_bad,
                'atmospheric_coefficients_file': atm_bad,
                'radiometry_correction_file': data_bad,
                'spectral_calibration_file': data_bad,
                'posterior_uncertainty_file': state_bad
            }

        else:
            to_write = {}

            meas = input_data.meas
            geom = input_data.geom
            reference_reflectance = input_data.reference_reflectance

            if self.config.implementation.mode == 'inversion_mcmc':
                state_est = states.mean(axis=0)
            else:
                state_est = states[-1, :]

            ############ Start with all of the 'independent' calculations
            if 'estimated_state_file' in self.output_datasets:
                to_write['estimated_state_file'] = state_est

            if 'path_radiance_file' in self.output_datasets:
                path_est = fm.calc_meas(state_est,
                                        geom,
                                        rfl=np.zeros(self.meas_wl.shape))
                to_write['path_radiance_file'] = np.column_stack(
                    (fm.instrument.wl_init, path_est))

            if 'spectral_calibration_file' in self.output_datasets:
                # Spectral calibration
                wl, fwhm = fm.calibration(state_est)
                cal = np.column_stack(
                    [np.arange(0, len(wl)), wl / 1000.0, fwhm / 1000.0])
                to_write['spectral_calibration_file'] = cal

            if 'posterior_uncertainty_file' in self.output_datasets:
                S_hat, K, G = iv.calc_posterior(state_est, geom, meas)
                to_write['posterior_uncertainty_file'] = np.sqrt(
                    np.diag(S_hat))

            ############ Now proceed to the calcs where they may be some overlap

            if any(item in
                   ['estimated_emission_file', 'apparent_reflectance_file']
                   for item in self.output_datasets):
                Ls_est = fm.calc_Ls(state_est, geom)

            if any(item in [
                    'estimated_reflectance_file', 'apparent_reflectance_file',
                    'modeled_radiance_file', 'simulated_measurement_file'
            ] for item in self.output_datasets):
                lamb_est = fm.calc_lamb(state_est, geom)

            if any(item in
                   ['modeled_radiance_file', 'simulated_measurement_file']
                   for item in self.output_datasets):
                meas_est = fm.calc_meas(state_est, geom, rfl=lamb_est)
                if 'modeled_radiance_file' in self.output_datasets:
                    to_write['modeled_radiance_file'] = np.column_stack(
                        (fm.instrument.wl_init, meas_est))

                if 'simulated_measurement_file' in self.output_datasets:
                    meas_sim = fm.instrument.simulate_measurement(
                        meas_est, geom)
                    to_write['simulated_measurement_file'] = np.column_stack(
                        (self.meas_wl, meas_sim))

            if 'estimated_emission_file' in self.output_datasets:
                to_write['estimated_emission_file'] = np.column_stack(
                    (self.meas_wl, Ls_est))

            if 'estimated_reflectance_file' in self.output_datasets:
                to_write['estimated_reflectance_file'] = np.column_stack(
                    (self.meas_wl, lamb_est))

            if 'apparent_reflectance_file' in self.output_datasets:
                # Upward emission & glint and apparent reflectance
                apparent_rfl_est = lamb_est + Ls_est
                to_write['apparent_reflectance_file'] = np.column_stack(
                    (self.meas_wl, apparent_rfl_est))

            x_surface, x_RT, x_instrument = fm.unpack(state_est)
            if any(item in
                   ['algebraic_inverse_file', 'atmospheric_coefficients_file']
                   for item in self.output_datasets):
                rfl_alg_opt, Ls, coeffs = invert_algebraic(
                    fm.surface, fm.RT, fm.instrument, x_surface, x_RT,
                    x_instrument, meas, geom)

            if 'algebraic_inverse_file' in self.output_datasets:
                to_write['algebraic_inverse_file'] = np.column_stack(
                    (self.meas_wl, rfl_alg_opt))

            if 'atmospheric_coefficients_file' in self.output_datasets:
                rhoatm, sphalb, transm, solar_irr, coszen, transup = coeffs
                atm = np.column_stack(
                    list(coeffs[:4]) +
                    [np.ones((len(self.meas_wl), 1)) * coszen])
                atm = atm.T.reshape((len(self.meas_wl) * 5, ))
                to_write['atmospheric_coefficients_file'] = atm

            if 'radiometry_correction_file' in self.output_datasets:
                factors = np.ones(len(self.meas_wl))
                if 'reference_reflectance_file' in self.input_datasets:
                    meas_est = fm.calc_meas(state_est,
                                            geom,
                                            rfl=reference_reflectance)
                    factors = meas_est / meas
                else:
                    logging.warning('No reflectance reference')
                to_write['radiometry_correction_file'] = factors

        return to_write
示例#12
0
                                                            surface_file,
                                                            1,
                                                            "multicomponent_surface",
                                                            engine,
                                                            observables)

    full_config = Config({"forward_model":{"instrument":instrument_config,
                                           "surface":surface_config,
                                           "radiative_transfer": rtm_config}})
    #Start up ray
    if ray.is_initialized():
        ray.shutdown()
    ray.init(num_cpus = 48)

    # Run intial forward model
    fm = ForwardModel(full_config)

    inversion_settings = {"implementation": {"mode": "inversion",
                                             "inversion": {
                                              "windows": windows}}}
    inverse_config = Config(inversion_settings)
    iv = Inversion(inverse_config, fm)

    # Refine water vapor LUT
    water = []
    window  =5
    for line in range(10,990,100):
        print(line)
        obs_mean  =  observables.get_chunk(2,990,
                                          line-window,line+window).mean(axis =(0,1))
        loc_mean  =  location.get_chunk(2,990,