def violin_plots_confidence(n_generations, n_agents, bottleneck,
                            length_inputs):
    """
    """
    # FIX: it works for any number of agents and generations
    # but doesn't show the difference between generations and agents with colours

    data = iteration.iterate(n_generations, n_agents, bottleneck,
                             length_inputs)

    plt.violinplot(data.as_matrix())

    plt.title("Bottleneck: {}".format(bottleneck))
    plt.xlabel("Generations")
    plt.ylabel("Confidence for all inputs")
    plt.show()
示例#2
0
cpt_idle = 0
i_snap = 0
d12 = 0
duration = 0

coact_pos = np.zeros((p, p))
coact_neg = coact_pos.copy()

r_i_k, r_i_S_A, r_i_S_B, sig_i_k, m_mu, dt_r_i_k_act, dt_r_i_S_A, \
    dt_r_i_S_B, theta_i_k, dt_theta_i_k, h_i_k = initialisation.network(
        J_i_j_k_l, delta__ksi_i_mu__k, g_A, w, cue_mask)

for iT in tqdm(range(nT)):
    iteration.iterate(J_i_j_k_l, delta__ksi_i_mu__k, tS[iT],
                      analyseTime, analyseDivergence, sig_i_k, r_i_k,
                      r_i_S_A, r_i_S_B, theta_i_k, h_i_k, m_mu,
                      dt_r_i_S_A, dt_r_i_S_B, dt_r_i_k_act,
                      dt_theta_i_k, cue, t_0, g_A, w, cue_mask)

    # Saving data for plots

    # if tS[iT] > t_0+tau_1:
    # print((np.outer(m_mu, m_mu)).shape)
    # coact = np.outer(m_mu, m_mu)
    # tmp_ind = coact > coact_pos
    # coact_pos[tmp_ind] = coact[tmp_ind]
    # tmp_ind = coact < coact_neg
    # coact_neg[tmp_ind] = coact[tmp_ind]

    duration = tS[iT]-t_0
    retrieved_pattern = np.argmax(m_mu)