def test_load_dataset_2d_png(download_data_testing_test_files, loader_parameters, model_parameters, transform_parameters): """ Test to make sure load_dataset runs with 2D PNG files, writes corresponding NIfTI files, and binarizes ground-truth values to 0 and 1. """ loader_parameters.update({LoaderParamsKW.MODEL_PARAMS: model_parameters}) bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) data_lst = ['sub-rat3_ses-01_sample-data9_SEM.png'] ds = imed_loader.load_dataset( bids_df, **{ **loader_parameters, **{ 'data_list': data_lst, 'transforms_params': transform_parameters, 'dataset_type': 'training' } }) fname_png = bids_df.df[bids_df.df['filename'] == data_lst[0]]['path'].values[0] fname_nii = imed_loader_utils.update_filename_to_nifti(fname_png) assert Path(fname_nii).exists() == 1 assert ds[0]['input'].shape == (1, 756, 764) assert ds[0]['gt'].shape == (1, 756, 764) assert np.unique(ds[0]['gt']).tolist() == [0, 1]
def test_get_target_filename_list_multiple_raters(loader_parameters, model_parameters, transform_parameters): """ Test that all target_suffix are considered for target filename when list """ loader_parameters.update({LoaderParamsKW.MODEL_PARAMS: model_parameters}) bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) data_lst = ['sub-rat3_ses-01_sample-data9_SEM.png'] test_ds = imed_loader.load_dataset( bids_df, **{ **loader_parameters, **{ 'data_list': data_lst, 'transforms_params': transform_parameters, 'dataset_type': 'training' } }) target_filename = test_ds.filename_pairs[0][1] assert len(target_filename) == len( loader_parameters[LoaderParamsKW.TARGET_SUFFIX]) assert len(target_filename[0]) == len( loader_parameters[LoaderParamsKW.TARGET_SUFFIX][0]) assert len(target_filename[1]) == len( loader_parameters[LoaderParamsKW.TARGET_SUFFIX][1])
def test_bids_df_microscopy_png(download_data_testing_test_files, loader_parameters): """ Test for microscopy png file format Test for _sessions.tsv and _scans.tsv files Test for target_suffix as a nested list Test for when no contrast_params are provided """ bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) df_test = bids_df.df.drop(columns=['path']) df_test = df_test.sort_values(by=['filename']).reset_index(drop=True) csv_ref = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_ref.csv") csv_test = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_test.csv") df_test.to_csv(csv_test, index=False) diff = csv_diff.compare(csv_diff.load_csv(open(csv_ref)), csv_diff.load_csv(open(csv_test))) assert diff == { 'added': [], 'removed': [], 'changed': [], 'columns_added': [], 'columns_removed': [] }
def test_bids_df_anat(download_data_testing_test_files, loader_parameters): """ Test for MRI anat nii.gz file format Test for when no file extensions are provided Test for multiple target_suffix Test behavior when "roi_suffix" is not None """ bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) df_test = bids_df.df.drop(columns=['path']) df_test = df_test.sort_values(by=['filename']).reset_index(drop=True) csv_ref = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_ref.csv") csv_test = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_test.csv") df_test.to_csv(csv_test, index=False) diff = csv_diff.compare(csv_diff.load_csv(open(csv_ref)), csv_diff.load_csv(open(csv_test))) assert diff == { 'added': [], 'removed': [], 'changed': [], 'columns_added': [], 'columns_removed': [] }
def test_bids_df_no_validate(download_data_testing_test_files, loader_parameters): """ Test for ct-scan nii.gz file format Test for when validate_BIDS is set to False for the loader """ # Rename files so the loader won't pick them up if validate_BIDS is true Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "sub-spleen2").rename( Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "ssub-spleen2")) bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) df_test = bids_df.df.drop(columns=['path']) df_test = df_test.sort_values(by=['filename']).reset_index(drop=True) csv_ref = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_ref.csv") csv_test = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_test.csv") df_test.to_csv(csv_test, index=False) diff = csv_diff.compare(csv_diff.load_csv(open(csv_ref)), csv_diff.load_csv(open(csv_test))) Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "ssub-spleen2").rename( Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "sub-spleen2")) assert diff == { 'added': [], 'removed': [], 'changed': [], 'columns_added': [], 'columns_removed': [] }
def split_dataset(initial_config): """ Args: initial_config (dict): The original config file, which we use as a basis from which to modify our hyperparameters. .. code-block:: JSON { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/" } """ loader_parameters = initial_config[ConfigKW.LOADER_PARAMETERS] path_output = Path(initial_config[ConfigKW.PATH_OUTPUT]) if not path_output.is_dir(): logger.info(f'Creating output path: {path_output}') path_output.mkdir(parents=True) else: logger.info(f'Output path already exists: {path_output}') bids_df = BidsDataframe(loader_parameters, str(path_output), derivatives=True) train_lst, valid_lst, test_lst = imed_loader_utils.get_new_subject_file_split( df=bids_df.df, data_testing=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.DATA_TESTING], split_method=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.SPLIT_METHOD], random_seed=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.RANDOM_SEED], train_frac=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.TRAIN_FRACTION], test_frac=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.TEST_FRACTION], path_output="./", balance=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.BALANCE] \ if SplitDatasetKW.BALANCE in initial_config[ConfigKW.SPLIT_DATASET] else None ) # save the subject distribution split_dct = {'train': train_lst, 'valid': valid_lst, 'test': test_lst} split_path = "./" + "common_split_datasets.joblib" joblib.dump(split_dct, split_path) initial_config[ConfigKW.SPLIT_DATASET][ SplitDatasetKW.FNAME_SPLIT] = split_path return initial_config
def test_slice_filter(download_data_testing_test_files, transforms_dict, train_lst, target_lst, roi_params, slice_filter_params): if "ROICrop" in transforms_dict and roi_params["suffix"] is None: return cuda_available, device = imed_utils.define_device(GPU_ID) loader_params = { "transforms_params": transforms_dict, "data_list": train_lst, "dataset_type": "training", "requires_undo": False, "contrast_params": { "contrast_lst": ['T2w'], "balance": {} }, "path_data": [__data_testing_dir__], "target_suffix": target_lst, "extensions": [".nii.gz"], "roi_params": roi_params, "model_params": { "name": "Unet" }, "slice_filter_params": slice_filter_params, "patch_filter_params": { "filter_empty_mask": False, "filter_empty_input": False }, "slice_axis": "axial", "multichannel": False } # Get Training dataset bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) ds_train = imed_loader.load_dataset(bids_df, **loader_params) logger.info(f"\tNumber of loaded slices: {len(ds_train)}") train_loader = DataLoader(ds_train, batch_size=BATCH_SIZE, shuffle=True, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) cmpt_neg, cmpt_pos = _cmpt_slice(train_loader) if slice_filter_params["filter_empty_mask"]: assert cmpt_neg == 0 assert cmpt_pos != 0 else: # We verify if there are still some negative slices (they are removed with our filter) assert cmpt_neg != 0 and cmpt_pos != 0 logger.info(f"\tNumber of Neg/Pos slices in GT: {cmpt_neg/cmpt_pos}")
def test_read_png_tif(download_data_testing_test_files, loader_parameters, model_parameters): """ Test to make sure all combinaitions of PNG/TIF, 8/16 bits, Grayscale/RGB/RGBA files can be loaded without errors. """ metadata = {} metadata[MetadataKW.PIXEL_SIZE] = [0.07, 0.07] metadata[MetadataKW.PIXEL_SIZE_UNITS] = "um" loader_parameters.update({LoaderParamsKW.MODEL_PARAMS: model_parameters}) bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=False) file_lst = bids_df.df['path'].tolist() filename_pairs = [(file_lst, None, None, metadata if isinstance(metadata, list) else [metadata])] slice_axis = imed_utils.AXIS_DCT[loader_parameters[ LoaderParamsKW.SLICE_AXIS]] ds = imed_loader_mri2dseg.MRI2DSegmentationDataset(filename_pairs, slice_axis=slice_axis, nibabel_cache=True, transform=[None, None], slice_filter_fn=None) ds.load_filenames()
def test_bids_df_multi(download_data_testing_test_files, loader_parameters): """ Test for multiple folders in path_data """ bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) df_test = bids_df.df.drop(columns=['path']) df_test = df_test.sort_values(by=['filename']).reset_index(drop=True) csv_ref = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_ref_multi.csv") csv_test = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_test_multi.csv") df_test.to_csv(csv_test, index=False) diff = csv_diff.compare(csv_diff.load_csv(open(csv_ref)), csv_diff.load_csv(open(csv_test))) assert diff == { 'added': [], 'removed': [], 'changed': [], 'columns_added': [], 'columns_removed': [] }
def test_bids_df_ctscan(download_data_testing_test_files, loader_parameters): """ Test for ct-scan nii.gz file format Test for when dataset_description.json is not present in derivatives folder """ bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) df_test = bids_df.df.drop(columns=['path']) df_test = df_test.sort_values(by=['filename']).reset_index(drop=True) csv_ref = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_ref.csv") csv_test = Path(loader_parameters[LoaderParamsKW.PATH_DATA][0], "df_test.csv") df_test.to_csv(csv_test, index=False) diff = csv_diff.compare(csv_diff.load_csv(open(csv_ref)), csv_diff.load_csv(open(csv_test))) assert diff == { 'added': [], 'removed': [], 'changed': [], 'columns_added': [], 'columns_removed': [] }
def test_config_sha256(download_data_testing_test_files, initial_config): file_lst = ["sub-unf01_T2w.nii.gz"] loader_params = { "transforms_params": {}, "data_list": ['sub-unf01'], "dataset_type": "testing", "requires_undo": True, "contrast_params": {"contrast_lst": ['T2w'], "balance": {}}, "path_data": [__data_testing_dir__], "target_suffix": ["_lesion-manual"], "extensions": [".nii.gz"], "roi_params": {"suffix": "_seg-manual", "slice_filter_roi": 10}, "slice_filter_params": { "filter_empty_mask": False, "filter_empty_input": True }, "slice_axis": "axial", "multichannel": False } bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) generate_sha_256(initial_config, bids_df.df, file_lst) assert(initial_config['training_sha256']['sub-unf01_T2w.nii.gz'] == 'f020b368fea15399fa112badd28b2df69e044dba5d23b3fe1646d12d7d3d39ac')
def test_2d_patches_and_resampling(download_data_testing_test_files, loader_parameters, model_parameters, transform_parameters): """ Test that 2d patching is done properly. Test that microscopy pixelsize and resampling are applied on the right dimensions. """ loader_parameters.update({LoaderParamsKW.MODEL_PARAMS: model_parameters}) bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) data_lst = ['sub-rat3_ses-01_sample-data9_SEM.png'] ds = imed_loader.load_dataset( bids_df, **{ **loader_parameters, **{ 'data_list': data_lst, 'transforms_params': transform_parameters, 'dataset_type': 'training' } }) assert ds.is_2d_patch == True assert ds[0]['input'].shape == (1, 256, 128) assert ds[0]['input_metadata'][0].metadata[MetadataKW.INDEX_SHAPE] == ( 1512, 382) assert len(ds) == 28
def test_patch_filter(download_data_testing_test_files, transforms_dict, train_lst, target_lst, patch_filter_params, dataset_type): cuda_available, device = imed_utils.define_device(GPU_ID) loader_params = { "transforms_params": transforms_dict, "data_list": train_lst, "dataset_type": dataset_type, "requires_undo": False, "contrast_params": { "contrast_lst": ['SEM'], "balance": {} }, "path_data": [os.path.join(__data_testing_dir__, "microscopy_png")], "bids_config": f"{path_repo_root}/ivadomed/config/config_bids.json", "target_suffix": target_lst, "extensions": [".png"], "roi_params": { "suffix": None, "slice_filter_roi": None }, "model_params": { "name": "Unet", "length_2D": [32, 32], "stride_2D": [32, 32] }, "slice_filter_params": { "filter_empty_mask": False, "filter_empty_input": False }, "patch_filter_params": patch_filter_params, "slice_axis": "axial", "multichannel": False } # Get Training dataset bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) ds = imed_loader.load_dataset(bids_df, **loader_params) logger.info(f"\tNumber of loaded patches: {len(ds)}") loader = DataLoader(ds, batch_size=BATCH_SIZE, shuffle=True, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) logger.info("\tNumber of Neg/Pos patches in GT.") cmpt_neg, cmpt_pos = _cmpt_slice(loader) if patch_filter_params["filter_empty_mask"]: if dataset_type == "testing": # Filters on patches are not applied at testing time assert cmpt_neg + cmpt_pos == len(ds) else: # Filters on patches are applied at training time assert cmpt_neg == 0 assert cmpt_pos != 0 else: # We verify if there are still some negative patches (they are removed with our filter) assert cmpt_neg != 0 and cmpt_pos != 0
def test_bounding_box(download_data_testing_test_files, train_lst, target_lst, config): # Create mask mask_coord = [20, 40, 20, 90, 0, 25] mx1, mx2, my1, my2, mz1, mz2 = mask_coord mask = np.zeros((96, 96, 96)) mask[mx1:mx2 + 1, my1:my2 + 1, mz1:mz2 + 1] = 1 coord = imed_obj_detect.get_bounding_boxes(mask) assert coord[0] == mask_coord loader_params = { "data_list": train_lst, "dataset_type": "training", "requires_undo": False, "path_data": [__data_testing_dir__], "target_suffix": target_lst, "extensions": [".nii.gz"], "slice_filter_params": {"filter_empty_mask": False, "filter_empty_input": True}, "patch_filter_params": {"filter_empty_mask": False, "filter_empty_input": False}, "slice_axis": "axial" } if "Modified3DUNet" in config: config['model_params']["name"] = "Modified3DUNet" config['model_params'].update(config["Modified3DUNet"]) bounding_box_dict = {} bounding_box_path = Path(PATH_OUTPUT, 'bounding_boxes.json') if not Path(PATH_OUTPUT).exists(): PATH_OUTPUT.mkdir(parents=True, exist_ok=True) current_dir = Path.cwd() sub = train_lst[0].split('_')[0] contrast = config['contrast_params']['contrast_lst'][0] bb_path = str(Path(current_dir, __data_testing_dir__, sub, "anat", sub + "_" + contrast + ".nii.gz")) bounding_box_dict[bb_path] = coord with open(bounding_box_path, 'w') as fp: json.dump(bounding_box_dict, fp, indent=4) # Update loader_params with config loader_params.update(config) bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) ds = imed_loader.load_dataset(bids_df, **loader_params) handler = ds.handlers if "Modified3DUNet" in config else ds.indexes for index in range(len(handler)): if "Modified3DUNet" in config: if ds.disk_cache: path_seg_pair, _ = handler[index] with path_seg_pair.open('rb') as f: seg_pair = pickle.load(f) else: seg_pair, _ = handler[index] assert seg_pair['input'][0].shape[-3:] == (mx2 - mx1, my2 - my1, mz2 - mz1) else: if ds.disk_cache: path_seg_pair = handler[index] with path_seg_pair.open('rb') as f: seg_pair, _ = pickle.load(f) else: seg_pair, _ = handler[index] assert seg_pair['input'][0].shape[-2:] == (mx2 - mx1, my2 - my1) shutil.rmtree(PATH_OUTPUT)
def test_sampler(download_data_testing_test_files, transforms_dict, train_lst, target_lst, roi_params): cuda_available, device = imed_utils.define_device(GPU_ID) loader_params = { "transforms_params": transforms_dict, "data_list": train_lst, "dataset_type": "training", "requires_undo": False, "contrast_params": { "contrast_lst": ['T2w'], "balance": {} }, "path_data": [__data_testing_dir__], "target_suffix": target_lst, "extensions": [".nii.gz"], "roi_params": roi_params, "model_params": { "name": "Unet" }, "slice_filter_params": { "filter_empty_mask": False, "filter_empty_input": True }, "patch_filter_params": { "filter_empty_mask": False, "filter_empty_input": False }, "slice_axis": "axial", "multichannel": False } # Get Training dataset bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) ds_train = imed_loader.load_dataset(bids_df, **loader_params) logger.info("\nLoading without sampling") train_loader = DataLoader(ds_train, batch_size=BATCH_SIZE, shuffle=True, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) neg_percent, pos_percent = _cmpt_label(train_loader) assert abs(neg_percent - pos_percent) > 20 logger.info("\nLoading with sampling") train_loader_balanced = DataLoader( ds_train, batch_size=BATCH_SIZE, sampler=BalancedSampler(ds_train), shuffle=False, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) neg_percent_bal, pos_percent_bal = _cmpt_label(train_loader_balanced) # Check if the loader is more balanced. The actual distribution comes from a probabilistic model # This is however not very efficient to get close to 50 % # in the case where we have 16 slices, with 87.5 % of one class (positive sample). assert abs(neg_percent_bal - pos_percent_bal) <= abs(neg_percent - pos_percent)
def test_microscopy_pixelsize(download_data_testing_test_files, loader_parameters, model_parameters): """ Test that PixelSize and PixelSizeUnits microscopy metadata are handled properly for PixelSizeUnits: "mm", "um" and "nm" """ loader_parameters.update({LoaderParamsKW.MODEL_PARAMS: model_parameters}) bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) # PixelSizeUnits: "mm" data_lst = ['sub-rat2_sample-data5_SEM.png'] transform_parameters = { TransformationKW.RESAMPLE: { "wspace": 0.000093, "hspace": 0.000093 } } ds = imed_loader.load_dataset( bids_df, **{ **loader_parameters, **{ 'data_list': data_lst, 'transforms_params': transform_parameters, 'dataset_type': 'training' } }) assert ds[0]['input'].shape == (1, 725, 725) # PixelSizeUnits: "um" data_lst = ['sub-rat3_ses-02_sample-data11_run-1_SEM.png'] transform_parameters = { TransformationKW.RESAMPLE: { "wspace": 0.0001, "hspace": 0.0001 } } ds = imed_loader.load_dataset( bids_df, **{ **loader_parameters, **{ 'data_list': data_lst, 'transforms_params': transform_parameters, 'dataset_type': 'training' } }) assert ds[0]['input'].shape == (1, 839, 769) # PixelSizeUnits: "nm" data_lst = ['sub-rat3_ses-02_sample-data10_SEM.png'] transform_parameters = { TransformationKW.RESAMPLE: { "wspace": 0.0001, "hspace": 0.0001 } } ds = imed_loader.load_dataset( bids_df, **{ **loader_parameters, **{ 'data_list': data_lst, 'transforms_params': transform_parameters, 'dataset_type': 'training' } }) assert ds[0]['input'].shape == (1, 758, 737)
def test_inference_2d_microscopy(download_data_testing_test_files, transforms_dict, test_lst, target_lst, roi_params, testing_params): """ This test checks if the number of NifTI predictions equals the number of test subjects on 2d microscopy data. Used to catch a bug where the last slice of the last volume wasn't appended to the prediction (see: https://github.com/ivadomed/ivadomed/issues/823) Also tests the conversions to PNG predictions when source files are not Nifti and checks if the number of PNG predictions is 2x the number of test subjects (2-class model, outputs 1 PNG per class per subject). """ cuda_available, device = imed_utils.define_device(GPU_ID) model_params = {"name": "Unet", "is_2d": True, "out_channel": 3} loader_params = { "transforms_params": transforms_dict, "data_list": test_lst, "dataset_type": "testing", "requires_undo": True, "contrast_params": {"contrast_lst": ['SEM'], "balance": {}}, "path_data": [str(Path(__data_testing_dir__, "microscopy_png"))], "bids_config": f"{path_repo_root}/ivadomed/config/config_bids.json", "target_suffix": target_lst, "extensions": [".png"], "roi_params": roi_params, "slice_filter_params": {"filter_empty_mask": False, "filter_empty_input": True}, "patch_filter_params": {"filter_empty_mask": False, "filter_empty_input": False}, "slice_axis": SLICE_AXIS, "multichannel": False } loader_params.update({"model_params": model_params}) bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) # Get Testing dataset ds_test = imed_loader.load_dataset(bids_df, **loader_params) test_loader = DataLoader(ds_test, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) # Undo transform val_undo_transform = imed_transforms.UndoCompose(imed_transforms.Compose(transforms_dict)) # Update testing_params testing_params.update({ "slice_axis": loader_params["slice_axis"], "target_suffix": loader_params["target_suffix"], "undo_transforms": val_undo_transform }) # Model model = imed_models.Unet(out_channel=model_params['out_channel']) if cuda_available: model.cuda() model.eval() if not __output_dir__.is_dir(): __output_dir__.mkdir(parents=True, exist_ok=True) preds_npy, gt_npy = imed_testing.run_inference(test_loader=test_loader, model=model, model_params=model_params, testing_params=testing_params, ofolder=str(__output_dir__), cuda_available=cuda_available) assert len([x for x in __output_dir__.iterdir() if x.name.endswith(".nii.gz")]) == len(test_lst) assert len([x for x in __output_dir__.iterdir() if x.name.endswith(".png")]) == 2*len(test_lst)
def test_inference_target_suffix(download_data_testing_test_files, transforms_dict, test_lst, target_lst, roi_params, testing_params): """ This test checks if the filename(s) of the prediction(s) saved as NifTI file(s) in the pred_masks dir conform to the target_suffix or not. Thus, independent of underscore(s) in the target_suffix. As a result, _seg-axon-manual or _seg-axon_manual should yield the same filename(s). (c.f: https://github.com/ivadomed/ivadomed/issues/1135) """ cuda_available, device = imed_utils.define_device(GPU_ID) model_params = {"name": "Unet", "is_2d": True, "out_channel": 3} loader_params = { "transforms_params": transforms_dict, "data_list": test_lst, "dataset_type": "testing", "requires_undo": True, "contrast_params": {"contrast_lst": ['SEM'], "balance": {}}, "path_data": [str(Path(__data_testing_dir__, "microscopy_png"))], "bids_config": f"{path_repo_root}/ivadomed/config/config_bids.json", "target_suffix": target_lst, "extensions": [".png"], "roi_params": roi_params, "slice_filter_params": {"filter_empty_mask": False, "filter_empty_input": True}, "patch_filter_params": {"filter_empty_mask": False, "filter_empty_input": False}, "slice_axis": SLICE_AXIS, "multichannel": False } loader_params.update({"model_params": model_params}) # restructuring the dataset gt_path = f'{loader_params["path_data"][0]}/derivatives/labels/' for file_path in Path(gt_path).rglob('*.png'): src_filename = file_path.resolve() dst_filename = '_'.join(str(src_filename).rsplit('-', 1)) src_filename.rename(Path(dst_filename)) bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) ds_test = imed_loader.load_dataset(bids_df, **loader_params) test_loader = DataLoader(ds_test, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) # Undo transform val_undo_transform = imed_transforms.UndoCompose(imed_transforms.Compose(transforms_dict)) # Update testing_params testing_params.update({ "slice_axis": loader_params["slice_axis"], "target_suffix": loader_params["target_suffix"], "undo_transforms": val_undo_transform }) # Model model = imed_models.Unet(out_channel=model_params['out_channel']) if cuda_available: model.cuda() model.eval() if not __output_dir__.is_dir(): __output_dir__.mkdir(parents=True, exist_ok=True) preds_npy, gt_npy = imed_testing.run_inference(test_loader=test_loader, model=model, model_params=model_params, testing_params=testing_params, ofolder=str(__output_dir__), cuda_available=cuda_available) for x in __output_dir__.iterdir(): if x.name.endswith('_pred.nii.gz'): assert x.name.rsplit('_', 1)[0].endswith(loader_params['contrast_params']['contrast_lst'][-1]), ( 'Incompatible filename(s) of the prediction(s) saved as NifTI file(s)!' )
def test_inference(download_data_testing_test_files, transforms_dict, test_lst, target_lst, roi_params, testing_params): cuda_available, device = imed_utils.define_device(GPU_ID) model_params = {"name": "Unet", "is_2d": True} loader_params = { "transforms_params": transforms_dict, "data_list": test_lst, "dataset_type": "testing", "requires_undo": True, "contrast_params": {"contrast_lst": ['T2w'], "balance": {}}, "path_data": [__data_testing_dir__], "target_suffix": target_lst, "extensions": [".nii.gz"], "roi_params": roi_params, "slice_filter_params": {"filter_empty_mask": False, "filter_empty_input": True}, "patch_filter_params": {"filter_empty_mask": False, "filter_empty_input": False}, "slice_axis": SLICE_AXIS, "multichannel": False } loader_params.update({"model_params": model_params}) bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) # Get Testing dataset ds_test = imed_loader.load_dataset(bids_df, **loader_params) test_loader = DataLoader(ds_test, batch_size=BATCH_SIZE, shuffle=False, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=0) # Undo transform val_undo_transform = imed_transforms.UndoCompose(imed_transforms.Compose(transforms_dict)) # Update testing_params testing_params.update({ "slice_axis": loader_params["slice_axis"], "target_suffix": loader_params["target_suffix"], "undo_transforms": val_undo_transform }) # Model model = imed_models.Unet() if cuda_available: model.cuda() model.eval() metric_fns = [imed_metrics.dice_score, imed_metrics.hausdorff_score, imed_metrics.precision_score, imed_metrics.recall_score, imed_metrics.specificity_score, imed_metrics.intersection_over_union, imed_metrics.accuracy_score] metric_mgr = imed_metrics.MetricManager(metric_fns) if not __output_dir__.is_dir(): __output_dir__.mkdir(parents=True, exist_ok=True) preds_npy, gt_npy = imed_testing.run_inference(test_loader=test_loader, model=model, model_params=model_params, testing_params=testing_params, ofolder=str(__output_dir__), cuda_available=cuda_available) metric_mgr(preds_npy, gt_npy) metrics_dict = metric_mgr.get_results() metric_mgr.reset() logger.debug(metrics_dict)
def test_unet_time(download_data_testing_test_files, train_lst, target_lst, config): cuda_available, device = imed_utils.define_device(GPU_ID) loader_params = { "data_list": train_lst, "dataset_type": "training", "requires_undo": False, "path_data": [__data_testing_dir__], "target_suffix": target_lst, "extensions": [".nii.gz"], "slice_filter_params": {"filter_empty_mask": False, "filter_empty_input": True}, "patch_filter_params": {"filter_empty_mask": False, "filter_empty_input": False}, "slice_axis": "axial" } # Update loader_params with config loader_params.update(config) # Get Training dataset bids_df = BidsDataframe(loader_params, __tmp_dir__, derivatives=True) ds_train = imed_loader.load_dataset(bids_df, **loader_params) # Loader train_loader = DataLoader(ds_train, batch_size=1 if config["model_params"]["name"] == "Modified3DUNet" else BATCH_SIZE, shuffle=True, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=1) # MODEL model_params = loader_params["model_params"] model_params.update(MODEL_DEFAULT) # Get in_channel from contrast_lst if loader_params["multichannel"]: model_params["in_channel"] = len(loader_params["contrast_params"]["contrast_lst"]) else: model_params["in_channel"] = 1 # Get out_channel from target_suffix model_params["out_channel"] = len(loader_params["target_suffix"]) model_class = getattr(imed_models, model_params["name"]) model = model_class(**model_params) logger.debug(f"Training {model_params['name']}") if cuda_available: model.cuda() step_scheduler_batch = False # TODO: Add optim in pytest optimizer = optim.Adam(model.parameters(), lr=INIT_LR) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, N_EPOCHS) # TODO: add to pytest loss_fct = imed_losses.DiceLoss() load_lst, pred_lst, opt_lst, schedule_lst, init_lst, gen_lst = [], [], [], [], [], [] for epoch in tqdm(range(1, N_EPOCHS + 1), desc="Training"): start_time = time.time() start_init = time.time() model.train() tot_init = time.time() - start_init init_lst.append(tot_init) num_steps = 0 start_gen = 0 for i, batch in enumerate(train_loader): if i > 0: tot_gen = time.time() - start_gen gen_lst.append(tot_gen) start_load = time.time() input_samples = imed_utils.cuda(batch["input"], cuda_available) gt_samples = imed_utils.cuda(batch["gt"], cuda_available, non_blocking=True) tot_load = time.time() - start_load load_lst.append(tot_load) start_pred = time.time() if 'film_layers' in model_params: preds = model(input_samples, [[0, 1]]) else: preds = model(input_samples) tot_pred = time.time() - start_pred pred_lst.append(tot_pred) start_opt = time.time() loss = loss_fct(preds, gt_samples) optimizer.zero_grad() loss.backward() optimizer.step() if step_scheduler_batch: scheduler.step() num_steps += 1 tot_opt = time.time() - start_opt opt_lst.append(tot_opt) start_gen = time.time() start_schedule = time.time() if not step_scheduler_batch: scheduler.step() tot_schedule = time.time() - start_schedule schedule_lst.append(tot_schedule) end_time = time.time() total_time = end_time - start_time tqdm.write("Epoch {} took {:.2f} seconds.".format(epoch, total_time)) logger.info(f"Mean SD init {np.mean(init_lst)} -- {np.std(init_lst)}") logger.info(f"Mean SD load {np.mean(load_lst)} -- {np.std(load_lst)}") logger.info(f"Mean SD pred {np.mean(pred_lst)} -- {np.std(pred_lst)}") logger.info(f"Mean SDopt {np.mean(opt_lst)} -- {np.std(opt_lst)}") logger.info(f"Mean SD gen {np.mean(gen_lst)} -- {np.std(gen_lst)}") logger.info(f"Mean SD scheduler {np.mean(schedule_lst)} -- {np.std(schedule_lst)}")
def test_image_orientation(download_data_testing_test_files, loader_parameters): device = torch.device("cuda:" + str(GPU_ID) if torch.cuda.is_available() else "cpu") cuda_available = torch.cuda.is_available() if cuda_available: torch.cuda.set_device(device) logger.info(f"Using GPU ID {device}") bids_df = BidsDataframe(loader_parameters, __tmp_dir__, derivatives=True) contrast_params = loader_parameters["contrast_params"] target_suffix = loader_parameters["target_suffix"] roi_params = loader_parameters["roi_params"] train_lst = ['sub-unf01_T1w.nii.gz'] training_transform_dict = { "Resample": { "wspace": 1.5, "hspace": 1, "dspace": 3 }, "CenterCrop": { "size": [176, 128, 160] }, "NormalizeInstance": { "applied_to": ['im'] } } tranform_lst, training_undo_transform = imed_transforms.prepare_transforms( training_transform_dict) model_params = { "name": "Modified3DUNet", "dropout_rate": 0.3, "bn_momentum": 0.9, "depth": 2, "in_channel": 1, "out_channel": 1, "length_3D": [176, 128, 160], "stride_3D": [176, 128, 160], "attention": False, "n_filters": 8 } for dim in ['2d', '3d']: for slice_axis in [0, 1, 2]: if dim == '2d': ds = BidsDataset(bids_df=bids_df, subject_file_lst=train_lst, target_suffix=target_suffix, contrast_params=contrast_params, model_params=model_params, metadata_choice=False, slice_axis=slice_axis, transform=tranform_lst, multichannel=False) ds.load_filenames() else: ds = Bids3DDataset(bids_df=bids_df, subject_file_lst=train_lst, target_suffix=target_suffix, model_params=model_params, contrast_params=contrast_params, metadata_choice=False, slice_axis=slice_axis, transform=tranform_lst, multichannel=False) loader = DataLoader(ds, batch_size=1, shuffle=True, pin_memory=True, collate_fn=imed_loader_utils.imed_collate, num_workers=1) input_filename, gt_filename, roi_filename, metadata = ds.filename_pairs[ 0] segpair = SegmentationPair(input_filename, gt_filename, metadata=metadata, slice_axis=slice_axis) nib_original = nib.load(gt_filename[0]) # Get image with original, ras and hwd orientations input_init = nib_original.get_fdata() input_ras = nib.as_closest_canonical(nib_original).get_fdata() img, gt = segpair.get_pair_data() input_hwd = gt[0] pred_tmp_lst, z_tmp_lst = [], [] for i, batch in enumerate(loader): # batch["input_metadata"] = batch["input_metadata"][0] # Take only metadata from one input # batch["gt_metadata"] = batch["gt_metadata"][0] # Take only metadata from one label for smp_idx in range(len(batch['gt'])): # undo transformations if dim == '2d': preds_idx_undo, metadata_idx = training_undo_transform( batch["gt"][smp_idx], batch["gt_metadata"][smp_idx], data_type='gt') # add new sample to pred_tmp_lst pred_tmp_lst.append(preds_idx_undo[0]) z_tmp_lst.append( int(batch['input_metadata'][smp_idx][0] ['slice_index'])) else: preds_idx_undo, metadata_idx = training_undo_transform( batch["gt"][smp_idx], batch["gt_metadata"][smp_idx], data_type='gt') fname_ref = metadata_idx[0]['gt_filenames'][0] if (pred_tmp_lst and i == len(loader) - 1) or dim == '3d': # save the completely processed file as a nii nib_ref = nib.load(fname_ref) nib_ref_can = nib.as_closest_canonical(nib_ref) if dim == '2d': tmp_lst = [] for z in range(nib_ref_can.header.get_data_shape() [slice_axis]): tmp_lst.append( pred_tmp_lst[z_tmp_lst.index(z)]) arr = np.stack(tmp_lst, axis=-1) else: arr = np.array(preds_idx_undo[0]) # verify image after transform, undo transform and 3D reconstruction input_hwd_2 = imed_postpro.threshold_predictions(arr) # Some difference are generated due to transform and undo transform # (e.i. Resample interpolation) assert imed_metrics.dice_score(input_hwd_2, input_hwd) >= 0.8 input_ras_2 = imed_loader_utils.orient_img_ras( input_hwd_2, slice_axis) assert imed_metrics.dice_score(input_ras_2, input_ras) >= 0.8 input_init_2 = imed_loader_utils.reorient_image( input_hwd_2, slice_axis, nib_ref, nib_ref_can) assert imed_metrics.dice_score(input_init_2, input_init) >= 0.8 # re-init pred_stack_lst pred_tmp_lst, z_tmp_lst = [], []
loader_params = context["loader_parameters"] loader_params["contrast_params"]["contrast_lst"] = loader_params[ "contrast_params"]["training_validation"] # CHOOSE TO INDEX DERIVATIVES OR NOT # As per pybids, the indexing of derivatives works only if a "dataset_description.json" file # is present in "derivatives" or "labels" folder with minimal content: # {"Name": "Example dataset", "BIDSVersion": "1.0.2", "PipelineDescription": {"Name": "Example pipeline"}} derivatives = True # CREATE OUTPUT PATH path_output = context["path_output"] if not os.path.isdir(path_output): logger.info(f"Creating output path: {path_output}") os.makedirs(path_output) else: logger.warning(f"Output path already exists: {path_output}") # CREATE BIDSDataframe OBJECT bids_df = BidsDataframe(loader_params, path_output, derivatives) df = bids_df.df # DROP "path" COLUMN AND SORT BY FILENAME FOR TESTING PURPOSES WITH data-testing df = df.drop(columns=['path']) df = df.sort_values(by=['filename']).reset_index(drop=True) # SAVE DATAFRAME TO CSV FILE FOR data-testing path_csv = "test_df_new_loader.csv" df.to_csv(path_csv, index=False) logger.debug(df)