示例#1
0
def test_keep_largest_object(nii_seg):
    # Set a voxel to 1 at the corner to make sure it is set to 0 by the function
    coord = (1, 1, 1)
    nii_seg.dataobj[coord] = 1
    # Test function with array input
    arr_seg_proc = imed_postpro.keep_largest_object(np.copy(np.asanyarray(nii_seg.dataobj)))
    assert isinstance(arr_seg_proc, np.ndarray)
    assert check_bin_vs_soft(nii_seg.dataobj, arr_seg_proc)
    assert arr_seg_proc[coord] == 0
    # Make sure it works with nibabel input
    nii_seg_proc = imed_postpro.keep_largest_object(nii_seg)
    assert isinstance(nii_seg_proc, nib.nifti1.Nifti1Image)
    assert check_bin_vs_soft(nii_seg.dataobj, nii_seg_proc.dataobj)
    assert nii_seg_proc.dataobj[coord] == 0
示例#2
0
def generate_bounding_box_file(subject_list,
                               model_path,
                               path_output,
                               gpu_id=0,
                               slice_axis=0,
                               contrast_lst=None,
                               keep_largest_only=True,
                               safety_factor=None):
    """Creates json file containing the bounding box dimension for each images. The file has the following format:
    {"path/to/img.nii.gz": [[x1_min, x1_max, y1_min, y1_max, z1_min, z1_max],
    [x2_min, x2_max, y2_min, y2_max, z2_min, z2_max]]}
    where each list represents the coordinates of an object on the image (2 instance of a given object in this example).

    Args:
        subject_list (list): List of all subjects in the BIDS directory.
        model_path (string): Path to object detection model.
        path_output (string): Output path.
        gpu_id (int): If available, GPU number.
        slice_axis (int): Slice axis (0: sagittal, 1: coronal, 2: axial).
        contrast_lst (list): Contrasts.
        keep_largest_only (bool): Boolean representing if only the largest object of the prediction is kept.
        safety_factor (list or tuple): Factors to multiply each dimension of the bounding box.

    Returns:
        dict: Dictionary containing bounding boxes related to their image.

    """
    bounding_box_dict = {}
    if safety_factor is None:
        safety_factor = [1.0, 1.0, 1.0]
    for subject in subject_list:
        if subject.record["modality"] in contrast_lst:
            subject_path = str(subject.record["absolute_path"])
            object_mask, _ = imed_inference.segment_volume(model_path,
                                                           [subject_path],
                                                           gpu_id=gpu_id)
            object_mask = object_mask[0]
            if keep_largest_only:
                object_mask = imed_postpro.keep_largest_object(object_mask)

            mask_path = os.path.join(path_output, "detection_mask")
            if not os.path.exists(mask_path):
                os.mkdir(mask_path)
            nib.save(object_mask,
                     os.path.join(mask_path,
                                  subject_path.split("/")[-1]))
            ras_orientation = nib.as_closest_canonical(object_mask)
            hwd_orientation = imed_loader_utils.orient_img_hwd(
                ras_orientation.get_fdata(), slice_axis)
            bounding_boxes = get_bounding_boxes(hwd_orientation)
            bounding_box_dict[subject_path] = [
                adjust_bb_size(bb, safety_factor) for bb in bounding_boxes
            ]

    file_path = os.path.join(path_output, 'bounding_boxes.json')
    with open(file_path, 'w') as fp:
        json.dump(bounding_box_dict, fp, indent=4)
    return bounding_box_dict