示例#1
0
    def wrapped_fsum():
        """
        Returns an uncertainty-aware version of math.fsum, which must
        be contained in _original_func.
        """

        # The fsum function is flattened, in order to use the
        # wrap() wrapper:

        flat_fsum = lambda *args: original_func(args)

        flat_fsum_wrap = uncertainties.wrap(flat_fsum,
                                            itertools.repeat(lambda *args: 1))

        return wraps(lambda arg_list: flat_fsum_wrap(*arg_list), original_func)
    def wrapped_fsum():
        """
        Returns an uncertainty-aware version of math.fsum, which must
        be contained in _original_func.
        """

        # The fsum function is flattened, in order to use the
        # wrap() wrapper:

        flat_fsum = lambda *args: original_func(args)

        flat_fsum_wrap = uncertainties.wrap(
            flat_fsum, itertools.repeat(lambda *args: 1))

        return wraps(lambda arg_list: flat_fsum_wrap(*arg_list),
                     original_func)
this_module = sys.modules[__name__]

# We do not want to wrap module attributes such as __doc__, etc.:
for (name, func) in inspect.getmembers(math, inspect.isbuiltin):

    if name in no_std_wrapping:
        continue

    if name in fixed_derivatives:
        derivatives = fixed_derivatives[name]
    else:
        # Functions whose derivatives are calculated numerically by
        # this module fall here (isinf, fmod,...):
        derivatives = None  # Means: numerical calculation required
    setattr(this_module, name,
            wraps(uncertainties.wrap(func, derivatives), func))
    many_scalar_to_scalar_funcs.append(name)

###############################################################################
    
########################################
# Special cases: some of the functions from no_std_wrapping:

##########
# The math.factorial function is not converted to an uncertainty-aware
# function, because it does not handle non-integer arguments: it does
# not make sense to give it an argument with a numerical error
# (whereas this would be relevant for the gamma function).

##########
示例#4
0
this_module = sys.modules[__name__]

# We do not want to wrap module attributes such as __doc__, etc.:
for (name, func) in inspect.getmembers(math, inspect.isbuiltin):

    if name in no_std_wrapping:
        continue

    if name in fixed_derivatives:
        derivatives = fixed_derivatives[name]
    else:
        # Functions whose derivatives are calculated numerically by
        # this module fall here (isinf, fmod,...):
        derivatives = None  # Means: numerical calculation required
    setattr(this_module, name,
            wraps(uncertainties.wrap(func, derivatives), func))
    many_scalar_to_scalar_funcs.append(name)

###############################################################################

########################################
# Special cases: some of the functions from no_std_wrapping:

##########
# The math.factorial function is not converted to an uncertainty-aware
# function, because it does not handle non-integer arguments: it does
# not make sense to give it an argument with a numerical error
# (whereas this would be relevant for the gamma function).

##########