def main(interactive=True, try_use_sim=True, f=None): f = choose_random_framework() if f is None else f set_framework(f) sim = Simulator(interactive, try_use_sim) vis = Visualizer(ivy.to_numpy(sim.default_camera_ext_mat_homo)) pix_per_deg = 2 om_pix = sim.get_pix_coords() plr_degs = om_pix / pix_per_deg plr_rads = plr_degs * math.pi / 180 iterations = 10 if sim.with_pyrep else 1 for _ in range(iterations): depth, rgb = sim.omcam.cap() plr = ivy.concatenate([plr_rads, depth], -1) xyz_wrt_cam = ivy_mech.polar_to_cartesian_coords(plr) xyz_wrt_cam = ivy.reshape(xyz_wrt_cam, (-1, 3)) xyz_wrt_cam_homo = ivy_mech.make_coordinates_homogeneous(xyz_wrt_cam) inv_ext_mat_trans = ivy.transpose(sim.omcam.get_inv_ext_mat(), (1, 0)) xyz_wrt_world = ivy.matmul(xyz_wrt_cam_homo, inv_ext_mat_trans)[..., 0:3] with ivy.numpy.use: omni_cam_inv_ext_mat = ivy_mech.make_transformation_homogeneous( ivy.to_numpy(sim.omcam.get_inv_ext_mat())) vis.show_point_cloud(xyz_wrt_world, rgb, interactive, sphere_inv_ext_mats=[omni_cam_inv_ext_mat], sphere_radii=[0.025]) if not interactive: sim.omcam.set_pos(sim.omcam.get_pos() + ivy.array([-0.01, 0.01, 0.])) sim.close() unset_framework()
def main(interactive=True, try_use_sim=True, f=None): # config this_dir = os.path.dirname(os.path.realpath(__file__)) f = choose_random_framework(excluded=['numpy']) if f is None else f set_framework(f) sim = Simulator(interactive, try_use_sim) lr = 0.5 num_anchors = 3 num_sample_points = 100 # spline start anchor_points = ivy.cast( ivy.expand_dims(ivy.linspace(0, 1, 2 + num_anchors), -1), 'float32') query_points = ivy.cast( ivy.expand_dims(ivy.linspace(0, 1, num_sample_points), -1), 'float32') # learnable parameters robot_start_config = ivy.array(ivy.cast(sim.robot_start_config, 'float32')) robot_target_config = ivy.array( ivy.cast(sim.robot_target_config, 'float32')) learnable_anchor_vals = ivy.variable( ivy.cast( ivy.transpose( ivy.linspace(robot_start_config, robot_target_config, 2 + num_anchors)[..., 1:-1], (1, 0)), 'float32')) # optimizer optimizer = ivy.SGD(lr=lr) # optimize it = 0 colliding = True clearance = 0 joint_query_vals = None while colliding: total_cost, grads, joint_query_vals, link_positions, sdf_vals = ivy.execute_with_gradients( lambda xs: compute_cost_and_sdfs(xs[ 'w'], anchor_points, robot_start_config, robot_target_config, query_points, sim), Container({'w': learnable_anchor_vals})) colliding = ivy.reduce_min(sdf_vals[2:]) < clearance sim.update_path_visualization( link_positions, sdf_vals, os.path.join(this_dir, 'msp_no_sim', 'path_{}.png'.format(it))) learnable_anchor_vals = optimizer.step( Container({'w': learnable_anchor_vals}), grads)['w'] it += 1 sim.execute_motion(joint_query_vals) sim.close() unset_framework()
def main(interactive=True, try_use_sim=True, f=None): f = choose_random_framework() if f is None else f set_framework(f) sim = Simulator(interactive, try_use_sim) cam_pos = sim.cam.get_pos() iterations = 250 if sim.with_pyrep else 1 msg = 'tracking plant pot for 250 simulator steps...' if sim.with_pyrep else '' print(msg) for i in range(iterations): target_pos = sim.target.get_pos() tfrm = ivy_mech.target_facing_rotation_matrix(cam_pos, target_pos) sim.cam.set_rot_mat(tfrm) if not interactive: sim.target.set_pos(sim.target.get_pos() + ivy.array([-0.01, 0.01, 0.])) time.sleep(0.05) sim.close() unset_framework()
def main(interactive=True, try_use_sim=True, f=None): f = choose_random_framework() if f is None else f set_framework(f) sim = Simulator(interactive, try_use_sim) vis = Visualizer(ivy.to_numpy(sim.default_camera_ext_mat_homo)) xyzs = list() rgbs = list() iterations = 10 if sim.with_pyrep else 1 for _ in range(iterations): for cam in sim.cams: depth, rgb = cam.cap() xyz = sim.depth_to_xyz(depth, cam.get_inv_ext_mat(), cam.inv_calib_mat, [128] * 2) xyzs.append(xyz) rgbs.append(rgb) xyz = ivy.reshape(ivy.concatenate(xyzs, 1), (-1, 3)) rgb = ivy.reshape(ivy.concatenate(rgbs, 1), (-1, 3)) voxels = [ ivy.to_numpy(item) for item in ivy_vision.coords_to_voxel_grid(xyz, [100] * 3, features=rgb) ] cuboid_inv_ext_mats = [ ivy.to_numpy( ivy_mech.make_transformation_homogeneous( cam.get_inv_ext_mat())) for cam in sim.cams ] with ivy.numpy.use: vis.show_voxel_grid(voxels, interactive, cuboid_inv_ext_mats=cuboid_inv_ext_mats, cuboid_dims=[ np.array([0.045, 0.045, 0.112]) for _ in sim.cams ]) xyzs.clear() rgbs.clear() sim.close() unset_framework()
def main(f=None): # Framework Setup # # ----------------# # choose random framework f = choose_random_framework() if f is None else f set_framework(f) # Orientation # # ------------# # rotation representations # 3 rot_vec = ivy.array([0., 1., 0.]) # 3 x 3 rot_mat = ivy_mech.rot_vec_to_rot_mat(rot_vec) # 3 euler_angles = ivy_mech.rot_mat_to_euler(rot_mat, 'zyx') # 4 quat = ivy_mech.euler_to_quaternion(euler_angles) # 4 axis_and_angle = ivy_mech.quaternion_to_axis_angle(quat) # 3 rot_vec_again = axis_and_angle[..., :-1] * axis_and_angle[..., -1:] # Pose # # -----# # pose representations # 3 position = ivy.ones_like(rot_vec) # 6 rot_vec_pose = ivy.concatenate((position, rot_vec), 0) # 3 x 4 mat_pose = ivy_mech.rot_vec_pose_to_mat_pose(rot_vec_pose) # 6 euler_pose = ivy_mech.mat_pose_to_euler_pose(mat_pose) # 7 quat_pose = ivy_mech.euler_pose_to_quaternion_pose(euler_pose) # 6 rot_vec_pose_again = ivy_mech.quaternion_pose_to_rot_vec_pose(quat_pose) # Position # # ---------# # conversions of positional representation # 3 cartesian_coord = ivy.random_uniform(0., 1., (3, )) # 3 polar_coord = ivy_mech.cartesian_to_polar_coords(cartesian_coord) # 3 cartesian_coord_again = ivy_mech.polar_to_cartesian_coords(polar_coord) # cartesian co-ordinate frame-of-reference transformations # 3 x 4 trans_mat = ivy.random_uniform(0., 1., (3, 4)) # 4 cartesian_coord_homo = ivy_mech.make_coordinates_homogeneous( cartesian_coord) # 3 trans_cartesian_coord = ivy.matmul( trans_mat, ivy.expand_dims(cartesian_coord_homo, -1))[:, 0] # 4 trans_cartesian_coord_homo = ivy_mech.make_coordinates_homogeneous( trans_cartesian_coord) # 4 x 4 trans_mat_homo = ivy_mech.make_transformation_homogeneous(trans_mat) # 3 x 4 inv_trans_mat = ivy.inv(trans_mat_homo)[0:3] # 3 cartesian_coord_again = ivy.matmul( inv_trans_mat, ivy.expand_dims(trans_cartesian_coord_homo, -1))[:, 0] # message print('End of Run Through Demo!')
def main(batch_size=32, num_train_steps=31250, compile_flag=True, num_bits=8, seq_len=28, ctrl_output_size=100, memory_size=128, memory_vector_dim=28, overfit_flag=False, interactive=True, f=None): f = choose_random_framework() if f is None else f set_framework(f) # train config lr = 1e-3 if not overfit_flag else 1e-2 batch_size = batch_size if not overfit_flag else 1 num_train_steps = num_train_steps if not overfit_flag else 150 max_grad_norm = 50 # logging config vis_freq = 250 if not overfit_flag else 1 # optimizer optimizer = ivy.Adam(lr=lr) # ntm ntm = NTM(input_dim=num_bits + 1, output_dim=num_bits, ctrl_output_size=ctrl_output_size, ctrl_layers=1, memory_size=memory_size, memory_vector_dim=memory_vector_dim, read_head_num=1, write_head_num=1) # compile loss fn total_seq_example = ivy.random_uniform(shape=(batch_size, 2 * seq_len + 1, num_bits + 1)) target_seq_example = total_seq_example[:, 0:seq_len, :-1] if compile_flag: loss_fn_maybe_compiled = ivy.compile_fn( lambda v, ttl_sq, trgt_sq, sq_ln: loss_fn(ntm, v, ttl_sq, trgt_sq, sq_ln), dynamic=False, example_inputs=[ ntm.v, total_seq_example, target_seq_example, seq_len ]) else: loss_fn_maybe_compiled = lambda v, ttl_sq, trgt_sq, sq_ln: loss_fn( ntm, v, ttl_sq, trgt_sq, sq_ln) # init input_seq_m1 = ivy.cast( ivy.random_uniform(0., 1., (batch_size, seq_len, num_bits)) > 0.5, 'float32') mw = None vw = None for i in range(num_train_steps): # sequence to copy if not overfit_flag: input_seq_m1 = ivy.cast( ivy.random_uniform(0., 1., (batch_size, seq_len, num_bits)) > 0.5, 'float32') target_seq = input_seq_m1 input_seq = ivy.concatenate( (input_seq_m1, ivy.zeros((batch_size, seq_len, 1))), -1) eos = ivy.ones((batch_size, 1, num_bits + 1)) output_seq = ivy.zeros_like(input_seq) total_seq = ivy.concatenate((input_seq, eos, output_seq), -2) # train step loss, pred_vals = train_step(loss_fn_maybe_compiled, optimizer, ntm, total_seq, target_seq, seq_len, mw, vw, ivy.array(i + 1, 'float32'), max_grad_norm) # log print('step: {}, loss: {}'.format(i, ivy.to_numpy(loss).item())) # visualize if i % vis_freq == 0: target_to_vis = (ivy.to_numpy(target_seq[0] * 255)).astype( np.uint8) target_to_vis = np.transpose( cv2.resize(target_to_vis, (560, 160), interpolation=cv2.INTER_NEAREST), (1, 0)) pred_to_vis = (ivy.to_numpy(pred_vals[0] * 255)).astype(np.uint8) pred_to_vis = np.transpose( cv2.resize(pred_to_vis, (560, 160), interpolation=cv2.INTER_NEAREST), (1, 0)) img_to_vis = np.concatenate((pred_to_vis, target_to_vis), 0) img_to_vis = cv2.resize(img_to_vis, (1120, 640), interpolation=cv2.INTER_NEAREST) img_to_vis[0:60, -200:] = 0 img_to_vis[5:55, -195:-5] = 255 cv2.putText(img_to_vis, 'step {}'.format(i), (935, 42), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) img_to_vis[0:60, 0:200] = 0 img_to_vis[5:55, 5:195] = 255 cv2.putText(img_to_vis, 'prediction', (7, 42), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) img_to_vis[320:380, 0:130] = 0 img_to_vis[325:375, 5:125] = 255 cv2.putText(img_to_vis, 'target', (7, 362), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) if interactive: cv2.imshow('prediction_and_target', img_to_vis) if overfit_flag: cv2.waitKey(1) else: cv2.waitKey(100) cv2.destroyAllWindows()
def main(interactive=True, f=None): global INTERACTIVE INTERACTIVE = interactive # Framework Setup # # ----------------# # choose random framework set_framework(choose_random_framework() if f is None else f) # Spline Interpolation # # ---------------------# # config num_free_anchors = 3 num_samples = 100 constant_rot_vec = ivy.array([[0., 0., 0.]]) constant_z = ivy.array([[0.]]) # xy positions # 1 x 2 start_xy = ivy.array([[0., 0.]]) target_xy = ivy.array([[1., 1.]]) # 1 x 2 anchor1_xy = ivy.array([[0.6, 0.2]]) anchor2_xy = ivy.array([[0.5, 0.5]]) anchor3_xy = ivy.array([[0.4, 0.8]]) # as 6DOF poses # 1 x 6 start_pose = ivy.concatenate((start_xy, constant_z, constant_rot_vec), -1) anchor1_pose = ivy.concatenate((anchor1_xy, constant_z, constant_rot_vec), -1) anchor2_pose = ivy.concatenate((anchor2_xy, constant_z, constant_rot_vec), -1) anchor3_pose = ivy.concatenate((anchor3_xy, constant_z, constant_rot_vec), -1) target_pose = ivy.concatenate((target_xy, constant_z, constant_rot_vec), -1) num_anchors = num_free_anchors + 2 # num_anchors x 6 anchor_poses = ivy.concatenate( (start_pose, anchor1_pose, anchor2_pose, anchor3_pose, target_pose), 0) # uniform sampling for spline # num_anchors x 1 anchor_points = ivy.expand_dims(ivy.linspace(0., 1., num_anchors), -1) # num_samples x 1 query_points = ivy.expand_dims(ivy.linspace(0., 1., num_samples), -1) # interpolated spline poses # num_samples x 6 interpolated_poses = ivy_robot.sample_spline_path(anchor_points, anchor_poses, query_points) # xy motion # num_samples x 2 anchor_xy_positions = anchor_poses[..., 0:2] # num_samples x 2 interpolated_xy_positions = interpolated_poses[..., 0:2] # show xy path show_2d_spline_path(anchor_xy_positions, interpolated_xy_positions, [-0.095, 0.055], [0.638, 0.171], [0.544, 0.486], [0.445, 0.766], [0.9, 0.9], 'x', 'y', 'Interpolated Drone Pose Spline in XY Plane', 'start point', 'target point') # Rigid Mobile # # -------------# # drone relative body points rel_body_points = ivy.array([[0., 0., 0.], [-0.1, -0.1, 0.], [-0.1, 0.1, 0.], [0.1, -0.1, 0.], [0.1, 0.1, 0.]]) # create drone as ivy rigid mobile robot drone = RigidMobile(rel_body_points) # rotatin vectors # 1 x 3 start_rot_vec = ivy.array([[0., 0., 0.]]) target_rot_vec = ivy.array([[0., 0., np.pi]]) # 1 x 3 anchor1_rot_vec = ivy.array([[0., 0., np.pi / 4]]) anchor2_rot_vec = ivy.array([[0., 0., 2 * np.pi / 4]]) anchor3_rot_vec = ivy.array([[0., 0., 3 * np.pi / 4]]) # as 6DOF poses # 1 x 6 start_pose = ivy.concatenate((start_xy, constant_z, start_rot_vec), -1) anchor1_pose = ivy.concatenate((anchor1_xy, constant_z, anchor1_rot_vec), -1) anchor2_pose = ivy.concatenate((anchor2_xy, constant_z, anchor2_rot_vec), -1) anchor3_pose = ivy.concatenate((anchor3_xy, constant_z, anchor3_rot_vec), -1) target_pose = ivy.concatenate((target_xy, constant_z, target_rot_vec), -1) # num_anchors x 6 anchor_poses = ivy.concatenate( (start_pose, anchor1_pose, anchor2_pose, anchor3_pose, target_pose), 0) # interpolated spline poses # num_samples x 6 interpolated_poses = ivy_robot.sample_spline_path(anchor_points, anchor_poses, query_points) # as matrices # num_anchors x 3 x 4 anchor_matrices = ivy_mech.rot_vec_pose_to_mat_pose(anchor_poses) # num_samples x 3 x 4 interpolated_matrices = ivy_mech.rot_vec_pose_to_mat_pose( interpolated_poses) # sample drone body # num_anchors x num_body_points x 3 anchor_body_points = drone.sample_body(anchor_matrices) # num_samples x num_body_points x 3 interpolated_body_points = drone.sample_body(interpolated_matrices) # show show_full_spline_path(anchor_body_points, interpolated_body_points, [-0.168, 0.19], [0.88, 0.73], 'x', 'y', 'Sampled Drone Body Positions in XY Plane', 'start points', 'target points', False) # Manipulator # # ------------# class SimpleManipulator(Manipulator): # noinspection PyShadowingNames def __init__(self, base_inv_ext_mat=None): a_s = ivy.array([0.5, 0.5]) d_s = ivy.array([0., 0.]) alpha_s = ivy.array([0., 0.]) dh_joint_scales = ivy.ones((2, )) dh_joint_offsets = ivy.array([-np.pi / 2, 0.]) super().__init__(a_s, d_s, alpha_s, dh_joint_scales, dh_joint_offsets, base_inv_ext_mat) # create manipulator as ivy manipulator manipulator = SimpleManipulator() # joint angles # 1 x 2 start_joint_angles = ivy.array([[0., 0.]]) target_joint_angles = ivy.array([[-np.pi / 4, -np.pi / 4]]) # 1 x 2 anchor1_joint_angles = -ivy.array([[0.2, 0.6]]) * np.pi / 4 anchor2_joint_angles = -ivy.array([[0.5, 0.5]]) * np.pi / 4 anchor3_joint_angles = -ivy.array([[0.8, 0.4]]) * np.pi / 4 # num_anchors x 2 anchor_joint_angles = ivy.concatenate( (start_joint_angles, anchor1_joint_angles, anchor2_joint_angles, anchor3_joint_angles, target_joint_angles), 0) # interpolated joint angles # num_anchors x 2 interpolated_joint_angles = ivy_robot.sample_spline_path( anchor_points, anchor_joint_angles, query_points) # sample links # num_anchors x num_link_points x 3 anchor_link_points = manipulator.sample_links(anchor_joint_angles, samples_per_metre=5) # num_anchors x num_link_points x 3 interpolated_link_points = manipulator.sample_links( interpolated_joint_angles, samples_per_metre=5) # show show_2d_spline_path(anchor_joint_angles, interpolated_joint_angles, [-0.222, -0.015], [-0.147, -0.52], [-0.38, -0.366], [-0.64, -0.263], [-0.752, -0.79], r'$\theta_1$', r'$\theta_2$', 'Interpolated Manipulator Joint Angles Spline', 'start angles', 'target angles') show_full_spline_path(anchor_link_points, interpolated_link_points, [0.026, 0.8], [0.542, 0.26], 'x', 'y', 'Sampled Manipulator Links in XY Plane', 'start config', 'target config', True)
def main(interactive=True, f=None): global INTERACTIVE INTERACTIVE = interactive # Framework Setup # # ----------------# # choose random framework f = choose_random_framework() if f is None else f set_framework(f) # Camera Geometry # # ----------------# # intrinsics # common intrinsic params img_dims = [512, 512] pp_offsets = ivy.array([dim / 2 - 0.5 for dim in img_dims], 'float32') cam_persp_angles = ivy.array([60 * np.pi / 180] * 2, 'float32') # ivy cam intrinsics container intrinsics = ivy_vision.persp_angles_and_pp_offsets_to_intrinsics_object( cam_persp_angles, pp_offsets, img_dims) # extrinsics # 3 x 4 cam1_inv_ext_mat = ivy.array(np.load(data_dir + '/cam1_inv_ext_mat.npy'), 'float32') cam2_inv_ext_mat = ivy.array(np.load(data_dir + '/cam2_inv_ext_mat.npy'), 'float32') # full geometry # ivy cam geometry container cam1_geom = ivy_vision.inv_ext_mat_and_intrinsics_to_cam_geometry_object( cam1_inv_ext_mat, intrinsics) cam2_geom = ivy_vision.inv_ext_mat_and_intrinsics_to_cam_geometry_object( cam2_inv_ext_mat, intrinsics) cam_geoms = [cam1_geom, cam2_geom] # Camera Geometry Check # # ----------------------# # assert camera geometry shapes for cam_geom in cam_geoms: assert cam_geom.intrinsics.focal_lengths.shape == (2, ) assert cam_geom.intrinsics.persp_angles.shape == (2, ) assert cam_geom.intrinsics.pp_offsets.shape == (2, ) assert cam_geom.intrinsics.calib_mats.shape == (3, 3) assert cam_geom.intrinsics.inv_calib_mats.shape == (3, 3) assert cam_geom.extrinsics.cam_centers.shape == (3, 1) assert cam_geom.extrinsics.Rs.shape == (3, 3) assert cam_geom.extrinsics.inv_Rs.shape == (3, 3) assert cam_geom.extrinsics.ext_mats_homo.shape == (4, 4) assert cam_geom.extrinsics.inv_ext_mats_homo.shape == (4, 4) assert cam_geom.full_mats_homo.shape == (4, 4) assert cam_geom.inv_full_mats_homo.shape == (4, 4) # Image Data # # -----------# # load images # h x w x 3 color1 = ivy.array( cv2.imread(data_dir + '/rgb1.png').astype(np.float32) / 255) color2 = ivy.array( cv2.imread(data_dir + '/rgb2.png').astype(np.float32) / 255) # h x w x 1 depth1 = ivy.array( np.reshape( np.frombuffer( cv2.imread(data_dir + '/depth1.png', -1).tobytes(), np.float32), img_dims + [1])) depth2 = ivy.array( np.reshape( np.frombuffer( cv2.imread(data_dir + '/depth2.png', -1).tobytes(), np.float32), img_dims + [1])) # depth scaled pixel coords # h x w x 3 u_pix_coords = ivy_vision.create_uniform_pixel_coords_image(img_dims) ds_pixel_coords1 = u_pix_coords * depth1 ds_pixel_coords2 = u_pix_coords * depth2 # depth limits depth_min = ivy.reduce_min(ivy.concatenate((depth1, depth2), 0)) depth_max = ivy.reduce_max(ivy.concatenate((depth1, depth2), 0)) depth_limits = [depth_min, depth_max] # show images show_rgb_and_depth_images(color1, color2, depth1, depth2, depth_limits) # Flow and Depth Triangulation # # -----------------------------# # required mat formats cam1to2_full_mat_homo = ivy.matmul(cam2_geom.full_mats_homo, cam1_geom.inv_full_mats_homo) cam1to2_full_mat = cam1to2_full_mat_homo[..., 0:3, :] full_mats_homo = ivy.concatenate( (ivy.expand_dims(cam1_geom.full_mats_homo, 0), ivy.expand_dims(cam2_geom.full_mats_homo, 0)), 0) full_mats = full_mats_homo[..., 0:3, :] # flow flow1to2 = ivy_vision.flow_from_depth_and_cam_mats(ds_pixel_coords1, cam1to2_full_mat) # depth again depth1_from_flow = ivy_vision.depth_from_flow_and_cam_mats( flow1to2, full_mats) # show images show_flow_and_depth_images(depth1, flow1to2, depth1_from_flow, depth_limits) # Inverse Warping # # ----------------# # inverse warp rendering warp = u_pix_coords[..., 0:2] + flow1to2 color2_warp_to_f1 = ivy.reshape(ivy.bilinear_resample(color2, warp), color1.shape) # projected depth scaled pixel coords 2 ds_pixel_coords1_wrt_f2 = ivy_vision.ds_pixel_to_ds_pixel_coords( ds_pixel_coords1, cam1to2_full_mat) # projected depth 2 depth1_wrt_f2 = ds_pixel_coords1_wrt_f2[..., -1:] # inverse warp depth depth2_warp_to_f1 = ivy.reshape(ivy.bilinear_resample(depth2, warp), depth1.shape) # depth validity depth_validity = ivy.abs(depth1_wrt_f2 - depth2_warp_to_f1) < 0.01 # inverse warp rendering with mask color2_warp_to_f1_masked = ivy.where(depth_validity, color2_warp_to_f1, ivy.zeros_like(color2_warp_to_f1)) # show images show_inverse_warped_images(depth1_wrt_f2, depth2_warp_to_f1, depth_validity, color1, color2_warp_to_f1, color2_warp_to_f1_masked, depth_limits) # Forward Warping # # ----------------# # forward warp rendering ds_pixel_coords1_proj = ivy_vision.ds_pixel_to_ds_pixel_coords( ds_pixel_coords2, ivy.inv(cam1to2_full_mat_homo)[..., 0:3, :]) depth1_proj = ds_pixel_coords1_proj[..., -1:] ds_pixel_coords1_proj = ds_pixel_coords1_proj[..., 0:2] / depth1_proj features_to_render = ivy.concatenate((depth1_proj, color2), -1) # without depth buffer f1_forward_warp_no_db, _, _ = ivy_vision.quantize_to_image( ivy.reshape(ds_pixel_coords1_proj, (-1, 2)), img_dims, ivy.reshape(features_to_render, (-1, 4)), ivy.zeros_like(features_to_render), with_db=False) # with depth buffer f1_forward_warp_w_db, _, _ = ivy_vision.quantize_to_image( ivy.reshape(ds_pixel_coords1_proj, (-1, 2)), img_dims, ivy.reshape(features_to_render, (-1, 4)), ivy.zeros_like(features_to_render), with_db=False if ivy.get_framework() == 'mxnd' else True) # show images show_forward_warped_images(depth1, color1, f1_forward_warp_no_db, f1_forward_warp_w_db, depth_limits) # message print('End of Run Through Demo!')
def main(interactive=True, try_use_sim=True, f=None): # setup framework f = choose_random_framework() if f is None else f set_framework(f) # simulator and drone sim = Simulator(interactive, try_use_sim) drone = sim.drone # ESM esm = ivy_mem.ESM() esm_mem = esm.empty_memory(1, 1) # demo loop for _ in range(1000 if interactive and sim.with_pyrep else 100): # log iteration print('timestep {}'.format(_)) # acquire image measurements depth, rgb = drone.cam.cap() # convert to ESM format ds_pix_coords = ivy_vision.depth_to_ds_pixel_coords(depth) cam_coords = ivy_vision.ds_pixel_to_cam_coords(ds_pix_coords, drone.cam.inv_calib_mat)[..., 0:3] img_mean = ivy.concatenate((cam_coords, rgb), -1) # acquire pose measurements cam_rel_mat = drone.cam.mat_rel_to_drone agent_rel_mat = ivy.array(drone.measure_incremental_mat()) # single esm camera measurement esm_cam_meas = ESMCamMeasurement( img_mean=img_mean, cam_rel_mat=cam_rel_mat ) # total esm observation obs = ESMObservation( img_meas={'cam0': esm_cam_meas}, agent_rel_mat=agent_rel_mat) esm_mem = esm(obs, esm_mem) # update esm visualization if not interactive: continue rgb_img = _add_image_border( cv2.resize(ivy.to_numpy(rgb).copy(), (180, 180))) rgb_img = _add_title(rgb_img, 25, 75, 2, 'raw rgb', 70) depth_img = _add_image_border(cv2.resize(np.clip( np.tile(ivy.to_numpy(depth), (1, 1, 3))/3, 0, 1).copy(), (180, 180))) depth_img = _add_title(depth_img, 25, 90, 2, 'raw depth', 85) raw_img_concatted = np.concatenate((rgb_img, depth_img), 0) esm_feat = _add_image_border(np.clip(ivy.to_numpy(esm_mem.mean[0, 0, ..., 3:]), 0, 1).copy()) esm_feat = _add_title(esm_feat, 25, 80, 2, 'esm rgb', 75) esm_depth = _add_image_border(np.clip(np.tile(ivy.to_numpy(esm_mem.mean[0, 0, ..., 2:3])/3, (1, 1, 3)), 0, 1).copy()) esm_depth = _add_title(esm_depth, 25, 95, 2, 'esm depth', 90) esm_img_concatted = np.concatenate((esm_feat, esm_depth), 0) img_to_show = np.concatenate((raw_img_concatted, esm_img_concatted), 1) plt.imshow(img_to_show) plt.show(block=False) plt.pause(0.001) # end of demo sim.close() unset_framework()
def main(interactive=True, try_use_sim=True, f=None): f = choose_random_framework() if f is None else f set_framework(f) with_mxnd = f is ivy.mxnd if with_mxnd: print('\nMXnet does not support "sum" or "min" reductions for scatter_nd,\n' 'instead it only supports non-deterministic replacement for duplicates.\n' 'Depth buffer rendering (requies min) or fusion buffer (requies sum) are therefore unsupported.\n' 'The rendering in this demo with MXNet backend exhibits non-deterministic jagged edges as a result.') sim = Simulator(interactive, try_use_sim) import matplotlib.pyplot as plt xyzs = list() rgbs = list() iterations = 10 if sim.with_pyrep else 1 for _ in range(iterations): for cam in sim.cams: depth, rgb = cam.cap() xyz = sim.depth_to_xyz(depth, cam.get_inv_ext_mat(), cam.inv_calib_mat, [1024]*2) xyzs.append(xyz) rgbs.append(rgb) xyz = ivy.reshape(ivy.concatenate(xyzs, 1), (-1, 3)) rgb = ivy.reshape(ivy.concatenate(rgbs, 1), (-1, 3)) cam_coords = ivy_vision.world_to_cam_coords(ivy_mech.make_coordinates_homogeneous(ivy.expand_dims(xyz, 1)), sim.target_cam.get_ext_mat()) ds_pix_coords = ivy_vision.cam_to_ds_pixel_coords(cam_coords, sim.target_cam.calib_mat) depth = ds_pix_coords[..., -1] pix_coords = ds_pix_coords[..., 0, 0:2] / depth final_image_dims = [512]*2 feat = ivy.concatenate((depth, rgb), -1) rendered_img_no_db, _, _ = ivy_vision.quantize_to_image( pix_coords, final_image_dims, feat, ivy.zeros(final_image_dims + [4]), with_db=False) with_db = not with_mxnd rendered_img_with_db, _, _ = ivy_vision.quantize_to_image( pix_coords, final_image_dims, feat, ivy.zeros(final_image_dims + [4]), with_db=with_db) a_img = cv2.resize(ivy.to_numpy(rgbs[0]), (256, 256)) a_img[0:50, 0:50] = np.zeros_like(a_img[0:50, 0:50]) a_img[5:45, 5:45] = np.ones_like(a_img[5:45, 5:45]) cv2.putText(a_img, 'a', (13, 33), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) b_img = cv2.resize(ivy.to_numpy(rgbs[1]), (256, 256)) b_img[0:50, 0:50] = np.zeros_like(b_img[0:50, 0:50]) b_img[5:45, 5:45] = np.ones_like(b_img[5:45, 5:45]) cv2.putText(b_img, 'b', (13, 33), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) c_img = cv2.resize(ivy.to_numpy(rgbs[2]), (256, 256)) c_img[0:50, 0:50] = np.zeros_like(c_img[0:50, 0:50]) c_img[5:45, 5:45] = np.ones_like(c_img[5:45, 5:45]) cv2.putText(c_img, 'c', (13, 33), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) target_img = cv2.resize(ivy.to_numpy(sim.target_cam.cap()[1]), (256, 256)) target_img[0:50, 0:140] = np.zeros_like(target_img[0:50, 0:140]) target_img[5:45, 5:135] = np.ones_like(target_img[5:45, 5:135]) cv2.putText(target_img, 'target', (13, 33), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) msg = 'non-deterministic' if with_mxnd else 'no depth buffer' width = 360 if with_mxnd else 320 no_db_img = np.copy(ivy.to_numpy(rendered_img_no_db[..., 3:])) no_db_img[0:50, 0:width+5] = np.zeros_like(no_db_img[0:50, 0:width+5]) no_db_img[5:45, 5:width] = np.ones_like(no_db_img[5:45, 5:width]) cv2.putText(no_db_img, msg, (13, 33), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) with_db_img = np.copy(ivy.to_numpy(rendered_img_with_db[..., 3:])) with_db_img[0:50, 0:350] = np.zeros_like(with_db_img[0:50, 0:350]) with_db_img[5:45, 5:345] = np.ones_like(with_db_img[5:45, 5:345]) cv2.putText(with_db_img, 'with depth buffer', (13, 33), cv2.FONT_HERSHEY_SIMPLEX, 1.2, tuple([0] * 3), 2) raw_imgs = np.concatenate((np.concatenate((a_img, b_img), 1), np.concatenate((c_img, target_img), 1)), 0) to_concat = (raw_imgs, no_db_img) if with_mxnd else (raw_imgs, no_db_img, with_db_img) final_img = np.concatenate(to_concat, 1) if interactive: print('\nClose the image window when you are ready.\n') plt.imshow(final_img) plt.show() xyzs.clear() rgbs.clear() sim.close() unset_framework()